Как выглядит гаусс пушка. Моя пушка Гаусса (гаусс-ган)

Гаусс пушка (гаусс винтовка)


Другие названия: гауссовка, гаусс-ружье, винтовка Гаусса, гаусс-ган, разгонная винтовка.

Гаусс-винтовка (или ее более крупная разновидность гаусс-пушка), как и рельсотрон , относится к электро-магнитному оружию. В настоящий момент боевых промышленных образцов не существует, хотя ряд лабораторий (по большей части любительских и университетских) продолжает настойчиво работать над созданием этого оружия. Система названа по имени немецкого ученого Карла Гаусса (1777-1855). С какого перепугу математик удостоился такой чести, лично я понять не могу (пока не могу, вернее не имею соответствующей информации). Гаусс к теории электромагнетизма имел куда меньшее отношение, чем к примеру Эрстед, Ампер, Фарадей или Максвелл, но, тем не менее, пушку назвали именно в его честь. Название прижилось, а посему будем им пользоваться и мы.

Принцип действия:
Гаусс винтовка состоит из катушек (мощных электромагнитов), насаженных на сделанный из диэлектрика ствол. При подаче тока электромагниты на какой-то краткий момент включаются один за другим в направлении от ствольной коробки к дулу. Они по очереди притягивают к себе стальную пулю (иглу, дротик или снаряд, если говорить о пушке) и тем самым разгоняют ее до значительных скоростей.

Достоинства оружия:
1. Отсутствие патрона. Это позволяет значительно увеличить вместимость магазина. Например, в магазин, в который вмещается 30 патронов, можно зарядить 100-150 пуль.
2. Высокая скорострельность. Теоретически система позволяет начинать разгон следующей пули еще до того, как предыдущая покинула ствол.
3. Бесшумность стрельбы. Сама конструкция оружия позволяет избавиться от большинства акустических составляющих выстрела (см. отзывы), поэтому стрельба из гаусс-винтовки выглядит как серия едва различимых хлопков.
4. Отсутствие демаскирующей вспышки. Данное свойство особенно полезно в темное время суток.
5. Малая отдача. По этой причине при выстреле ствол оружия практически не задирается, а следовательно возрастает точность огня.
6. Безотказность. В гаусс винтовке не используются патроны, а стало быть сразу отпадает вопрос о недоброкачественных боеприпасах. Если же вдобавок к этому вспомнить об отсутствии ударно-спускового механизма, то само понятие «осечка» можно позабыть, как страшный сон.
7. Повышенная износостойкость. Это свойство обусловлено малым количеством подвижных частей, низкими нагрузками на узлы и детали при стрельбе, отсутствием продуктов сгорания пороха.
8. Возможность использования как в открытом космосе, так и в атмосферах, подавляющих горение пороха.
9. Регулируемая скорость пули. Эта функция позволяет при необходимости уменьшать скорость пули ниже звуковой. В результате исчезают характерные хлопки, и гаусс-винтовка становится полностью беззвучной, а стало быть, пригодной для выполнения секретных спецопераций.

Недостатки оружия:
Среди недостатков Гаусс винтовки часто называют следующие: низкий КПД, большой расход энергии, большой вес и габариты, длительное время перезарядки конденсаторов и т. д. Хочу сказать, что все эти проблемы обусловлены лишь уровнем современного развития техники. В будущем при создании компактных и мощных источников питания, при использовании новых конструкционных материалов и сверхпроводников Гаусс пушка действительно может стать мощным и эффективным оружием.

В литературе, конечно же фантастической, гаусс-винтовкой вооружил легионеров Уильям Кейт в своем цикле «Пятый иностранный легион». (Одна из моих любимейших книг!) Была она и на вооружении милитаристов с планеты Клизанд, на которую занесло Джима ди Гриза в романе Гаррисона «Месть крысы из нержавеющей стали». Говорят, гаусовка встречается и в книгах из серии «S.T.A.L.K.E.R.», но я прочел всего пяток из них. Там ничего подобного не обнаружил, а за другие говорить не буду.

Что касается лично моего творчества, то в своем новом романе «Мародеры» я вручил гаусс-карабин «Метель-16» тульского производства своему главному герою Сергею Корну. Правда, владел он им только в начале книги. Ведь главный герой все-таки, а значит, ему полагается пушка посолидней.

Олег Шовкуненко

Отзывы и комментарии:

Александр 29.12.13
По п.3 - выстрел со сверхзвуковой скоростью пули в любом случае будет громким. По этой причине для бесшумного оружия используются специальные дозвуковые патроны.
По п.5 - отдача будет присуща любому оружию, стреляющему "материальными объектами" и зависит от соотношения масс пули и оружия, и импульса силы ускоряющей пулю.
По п.8 - никакая атмосфера не может повлиять на горение пороха в герметичном патроне. В открытом космосе огнестрельное оружие тоже будет стрелять.
Проблема может быть только в механической устойчивости деталей оружия и свойствах смазки при сверхнизких температурах. Но это вопрос решаемый и ещё в 1972 году были проведены испытательные стрельбы в открытом космосе из орбитальной пушки с военной орбитальной станции ОПС-2 (Салют-3).

Олег Шовкуненко
Александр хорошо, что написали. Честно говоря, делал описание оружия исходя из своего собственного понимания темы. Но может кое в чем оказался не прав. Давайте вместе разбираться по пунктам.

Пункт №3. «Бесшумность стрельбы».
Насколько я знаю, звук выстрела из любого огнестрельного оружия складывается из нескольких компонентов:
1) Звук или лучше сказать звуки срабатывания механизма оружия. Сюда относятся удар бойка по капсулю, лязг затвора и т.д.
2) Звук, который создает воздух, наполнявший ствол перед выстрелом. Его вытесняет как пуля, так и пороховые газы, просачивающиеся по каналам нарезки.
3) Звук, который создают сами пороховые газы при резком расширении и охлаждении.
4) Звук, создаваемый акустической ударной волной.
Первые три пункта к гауссовке вообще не относятся. Предвижу вопрос по воздуху в стволе, но в гаусс-виновке стволу совсем не обязательно быть цельным и трубчатым, а значит проблема отпадает сама собой. Так что остается пункт номер 4, как раз тот, о котором вы, Александр, и говорите. Хочу сказать, что акустическая ударная волна это далеко не самая громкая часть выстрела. Глушители современного оружия с ней практически вообще не борются. И тем не менее, огнестрельное оружие с глушителем все же называется бесшумным. Следовательно, и гауссовку тоже можно назвать бесшумной. Кстати, огромное вам спасибо, что напомнили. Я забыл указать среди достоинств гаусс-гана возможность регулировки скорости пули. Ведь возможно установить дозвуковой режим (что сделает оружие полностью бесшумным и предназначенным для скрытных действий в ближнем бою) и сверхзвуковой (это уже для войны по-настоящему).

Пункт №5. «Практически полное отсутствие отдачи».
Конечно, отдача у гассовки тоже имеется. Куда же без нее?! Закон сохранения импульса пока еще никто не отменял. Только принцип работы гаусс-винтовки сделает ее не взрывной, как в огнестреле, а как бы растянутой и плавной и потому куда менее ощутимой для стрелка. Хотя, честно говоря, это лишь мои подозрения. Пока еще не доводилось палить из такой пушки:))

Пункт №8. «Возможность использования как в открытом космосе…».
Ну, про невозможность использования огнестрельного оружия в космическом пространстве я вообще ничего не говорил. Только его потребуется так переделать, столько технических проблем решить, что уж легче создать гаусс-ган:)) Что касается планет со специфическими атмосферами, то применение на них огнестрела действительно может быть не только затруднено, но и небезопасно. Но это уже из раздела фантастики, собственно говоря, которой ваш покорный слуга и занимается.

Вячеслав 05.04.14
Спасибо за интересный рассказ об оружии. Все очень доступно изложено и разложено по полочкам. Еще бы схемку для пущей наглядности.

Олег Шовкуненко
Вячеслав, вставил схемку, как Вы и просили).

интересующийся 22.02.15
«Почему винтовка Гауса?» - в Википедии говорят что потому что он заложил основы теории электромагнетизма.

Олег Шовкуненко
Во-первых, исходя из этой логики, авиабомбу следовало назвать «Бомбой Ньютона», ведь она падает на землю, подчиняясь Закону всемирного тяготения. Во-вторых, в той же самой Википедии Гаусс в статье «Электромагнитное взаимодействие» вообще не упоминается. Хорошо, что мы все образованные люди и помним, что Гаусс вывел одноименную теорему. Правда, эта теорема входит в более общие уравнения Максвелла, так что Гаусс тут вроде как опять в пролете с «заложением основ теории электромагнетизма».

Евгений 05.11.15
Винтовка Гауса, это придуманное название оружия. Впервые оно появилось в легендарной постапокалептической игре Fallout 2.

Roman 26.11.16
1) насчет того какое отношение имеет Гаусс к названию) почитайте в Википедии, но не электромагнетизм, а теорема Гаусса эта теорема - основа электромагнетизма и является основой для уравнений Максвелла.
2) грохот от выстрела в основном из-за резко расширяющихся пороховых газов. потому как пуля она сверхзвуковая и через 500м от среза ствола, но грохота от нее нет! только свист от разрезаемого ударной волной от пули воздуха и только-то!)
3) насчет того, что мол существуют образцы стрелкового оружия и оно бесшумно потому, что мол пуля там дозвуковая - это бред! когда приводятся какие-либо аргументы, нужно разобраться с сутью вопроса! выстрел бесшумный не потому, что пуля дозвуковая, а потому, что там пороховые газы не вырываются из ствола! почитайте про пистолет ПСС в Вике.

Олег Шовкуненко
Roman, вы случайно не родственник Гауссу? Уж больно рьяно вы отстаиваете его право на данное название. Лично мне по барабану, если людям нравится, пусть будет гаусс-пушка. Насчет всего остального, почитайте отзывы к статье, там вопрос бесшумности уже детально обсуждался. Ничего нового к этому добавить не могу.

Даша 12.03.17
Пишу научную фантастику. Мнение: РАЗГОНКА – это оружие будущего. Я бы не стала приписывать чужаку-иноземцу право иметь первенство на это оружие. Русская РАЗГОНКА НАВЕРНЯКА ОПЕРЕДИТ гнилой запад. Лучше не давать гнилому иноземцу ПРАВО НАЗЫВАТЬ ОРУЖИЕ ЕГО ГОВЕНЫМ ИМЕНЕМ! У русских своих умников полно! (незаслуженно забытых). Кстати, пулемет (пушка) Гатлинга появился ПОЗЖЕ, чем русская СОРОКА (система вращающихся стволов). Гатлинг просто запатентовал украденную из России идею. (Будем впредь звать его Козел Гатл за это!). Поэтому Гаусс тоже не имеет отношения к разгонному оружию!

Олег Шовкуненко
Даша, патриотизм это конечно хорошо, но только здоровый и разумный. А вот с гаусс-пушкой, как говорится, поезд ушел. Термин уже прижился, как и многие другие. Не станем же мы менять понятия: интернет, карбюратор, футбол и т.д. Однако не столь уж и важно чьим именем названо то или иное изобретение, главное, кто сможет довести его до совершенства или, как в случае с гаусс-винтовкой, хотя бы до боевого состояния. К сожалению, пока не слышал о серьезных разработках боевых гаусс-систем, как в России, так и за рубежом.

Божков Александр 26.09.17
Все понятно. Но можно и про другие виды оружия статьи добавить?: Про термитную пушку, электромёт, BFG-9000, Гаусс-арбалет, эктоплазменный автомат.


В статье будет рассмотрен пример создания простейшей Гаусс-пушки. Суть устройства заключается в том, что оно работает на электромагнитном поле, то есть заряд запускается в полет при помощи электричества. Собирается такая пушка очень просто, при наличии всех необходимых материалов на сборку уходит около часа. Конечно, мощность пушки не велика, так как ее КПД составляет всего лишь 1%, но этого вполне хватает, чтобы пробить картон или пивную банку. Для накопления заряда используются легкодоступные конденсаторы, а источником напряжения является обычная розетка, то есть 220В переменного тока. Стрелять пушка может стальными шариками или дротиками, которые можно сделать из гвоздей.

Материалы и инструменты для сборки:
- лампочка (220В, 60 Ватт) с патроном;
- провода;
- конденсаторы (можно достать с компьютерного блока питания);
- диоды;
- металлические и пластиковые трубки;
- медный лакированный провод;
- клей (подойдет Titan);
- паяльник с припоем;
- изолента.


Процесс изготовления Гаусс-пушки:

Шаг первый. Как устроена пушка
Чтобы понять, как работает пушка, предлагается изучить схему. Она очень простая, здесь нет преобразователей, работает все от сети 220В. Цепь состоит из конденсаторов, которые накапливают заряд, диода (необходим для выравнивания переменного тока), катушки (собственно сам электромагнит), а также лампочки, которая будет ограничивать ток зарядки конденсаторов.


Шаг второй. Изготавливаем катушку
Катушка будет работать как электромагнит, когда на нее будет поступать напряжение от конденсаторов. Для изготовления катушки будет необходим лакированный провод, толщина которого составляет не менее 0.7 мм. Наматывается провод на пластиковую или металлическую трубочку, она также будет выступать в качестве ствола. Провод нужно наматывать аккуратно, ровно, виток за витком. Когда будет намотан первый слой, его нужно зафиксировать с помощью клея. Затем сверху наматывается новый слой. Чтобы выровнять витки, можно использовать деревянные предметы или бамбучины. В итоге катушка должна принять такой вид, как можно увидеть на фото.




Шаг третий. Делаем батарею конденсаторов
Батарея конденсаторов является источником питания пушки. Чем больше будет конденсаторов, тем больший заряд они смогут накопить, а значит, тем мощнее будет стрелять пушка. Для этих целей отлично подойдут конденсаторы от компьютерного блока питания, их номинальное напряжение составляет 200В. Что касается емкости, то это может быть 470 мкФ либо 560 мкФ. Всего автор использует шесть конденсаторов, они соединяются с помощью паяльника и проводов параллельно.


Шаг четвертый. Завершающий этап сборки
Для зарядки подобных конденсаторов понадобится постоянный ток, чтобы его получить, будут нужны диоды. Такие диоды можно найти опять же в компьютерном блоке питания. Чтобы система была надежной, можно установить параллельно 4 и более диодов. Минус диода должен подключаться к плюсу конденсатора, или наоборот.


Помимо всего прочего в цепь включается лампочка, она выполняет задачу резистора и не позволяет конденсаторам перезарядиться до состояния пробоя. Также лампочка выполнят роль индикатора зарядки, по ней можно определять, когда конденсаторы будут заряжены и можно делать выстрел.


Что же касается курка, то для выстрелов понадобится переключатель, а лучше всего тумблер. Важно, чтобы переключатель или тумблер мог выдерживать высокие нагрузки.

Гаусс-Ган достаточно распространенное устройство среди радиолюбителей. Устройство Гаусс-пушки достаточно простое. Пушка состоит из нескольких частей:
1) Источник питания
2) Преобразователь напряжения
3) Электромагнитная катушка

Это основные части устройства, которое широко известно под названием электромагнитный ускоритель масс Гаусса. Основные части устройства не критичны, все зависит от фантазии авторов. Основа работы тоже достаточно проста. Преобразователь напряжения повышает начальное напряжение источника питания до уровня 300-450 вольт, далее это напряжение выпрямляется и накапливается в электролитических конденсаторах. От емкости конденсаторов зависит мощность самой пушки. В момент пуска, весь потенциал конденсатора (часто используется блок из нескольких конденсаторов) подается на катушку, в последствии чего она превращается в мощный электромагнит и выталкивает железную массу. Принцип работы Гаусс-пушки в чем то схож с принципом работы реле, только тут питание подается на катушку кратковременно.

Мы сегодня рассмотрим конструкцию достаточно простого ускорителя масс достаточно высокой мощности. Устройство предназначено только для демонстрации принципа работы, просим соблюдать все меры по безопасности, поскольку такого рода устройства достаточно опасны по нескольким причинам.

Во-первых, на конденсаторах образуется высокое напряжение, а поскольку емкость конденсаторов большая, то есть опасность для жизни.
Во-вторых, ударная сила массы достаточно велика, поэтому не направляйте на людей и соблюдайте некоторую дистанцию от пушки.

В качестве преобразователя напряжения была выбрана однотактная схема на популярном таймере серии 555. Таймер работает в режиме генератора прямоугольных импульсов. Как известно, микросхема не содержит в себе дополнительного усилителя, поэтому было бы хорошо использовать дополнительный драйвер на выходе микросхемы, но как показала практика, драйвер тут не нужен, поскольку выходное напряжение более, чем достаточно для срабатывания транзистора, а ток на выходе микросхемы порядка 200мА. Таким образом, даже без дополнительного драйвера микросхема не перегружается, все работает отлично. Полевой транзистор - выбор не критичен, можно использовать любые транзисторы с током от 40 А, в моем случае использован IRFZ44, как дешевый и достаточно надежный вариант. В этой схеме не нужен фильтр гашения обратного тока - еще один плюс схемы.

Мощность схемы напрямую зависит от источника питания, от аккумулятора бесеребойника схема развивает порядка 45-60ватт, потребление при этом составляет 7,5-8 А.
С таким питанием очень сильно греется транзистор, но не стоит использовать громадные теплоотводы, поскольку устройство предназначено для кратковременной работы, и перегрев будет не очень уж и страшным.
В моем случае преобразователь собран на компактной макетной плате, монтаж двухсторонний. Мощность резисторов можно 0,125ватт.

Трансформатор

Намотка импульсного трансформатора самая ответственная часть, но тут ничего сложного нет, поскольку мы мотаем не высоковольтный трансформатор и опасности пробоя во вторичной обмотке тут нет, следовательно, требования к качестве намотки не очень уж и суровые.
Сердечник был использован от ЭПРА (балласт ЛДС на 60 ватт). На каркасе сначала была намотана первичная обмотка, которая состоит из 7 витков провода 1 мм (желательно мотать сразу двумя жилами провода 0,5мм).

После намотки первичной обмотки ее нужно изолировать. В качестве изоляции я почти всегда использую прозрачный скотч.
Вторичная обмотка мотается поверх первичной, состоит из 120 витков провода с диаметром 0,2-0,3 мм. Через каждые 40-50 витков желательно ставить изоляции тем же скотчем.

Такой преобразователь заряжает емкость в 1000 мкФ всего за одну секунду!

После того, как у нас есть готовый преобразователь напряжения 12-400 Вольт, можно идти дальше. В качестве выпрямителя можно использовать мост из импульсных диодов с током не менее 1 Ампер. Диоды FR207 или FR107 отлично подходят для наших целей.
Конденсаторы были выпаяны от старых компьютерных блоков питания (такие конденсаторы стоят достаточно дорого, поэтому проще найти старые блоки питания). Всего использовано 6 конденсаторов 200Вольт/470мкФ.

Соленоид намотан на трубке от шариковой ручки. Для намотки использовался провод с диаметром 1 мм, число витков 45.
Намотка делается слоями (мотать в навал не желательно).

В качестве снаряда подойдут любые железные предметы, которые будут свободно входить в трубку. Длина трубки (каркаса) 15см (можно использовать трубки с длиной 10-25 см)

Пушка уже почти готова, остается только собрать схему пускового механизма. На сей раз был использован тиристор серии КУ 202М(Н). Пуск схемы осуществляется отдельной пальчиковой батарейкой, при помощи которой подается питание на управляющий вывод тиристора, в следствии чего, последний срабатывает и емкость конденсаторов подается на соленоид.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
555 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRFZ44

1 В блокнот
VD1 Выпрямительный диод

1N4148

1 В блокнот
Выпрямительный диод

FR207

4 FR107 В блокнот
VS1 Тиристор & Симистор

КУ202М

1 В блокнот
C1 Конденсатор 10 нФ 1 В блокнот
C2 Конденсатор 3.9 нФ 1 В блокнот
C3-C8 Электролитический конденсатор 470мкФ 200В 6 В блокнот
R1, R2 Резистор
Пушка Гаусса (англ. Gauss gun , Gauss cannon ) — одна из разновидностей электромагнитного ускорителя масс. Названа по имени учёного Гаусса, исследовавшего физические принципы электромагнетизма, на которых основано данное устройство.
Принцип действия
Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. Снаряд при этом получает на концах полюса симметрично полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, т.е. тормозится. Но если в момент прохождения снаряда через середину соленоида отключить в нём ток, то магнитное поле исчезнет, и снаряд вылетит из другого конца ствола. Но при выключении источника питания в катушке образуется ток самоиндукции, который имеет обратное направление тока, и поэтому меняет полярность катушки. А это значит, что при резком выключении источника питания снаряд, пролетевший центр катушки, будет отталкиваться и получать ускорение дальше. В ином случае, если снаряд не достиг центра, он будет тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Если используется полярный конденсатор (напр. на электролите), то в цепи обязательно должны быть диоды, которые защитят конденсатор от тока самоиндукции и взрыва.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, то есть заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатой пушки Гаусса будет максимальным.

Расчёты
Энергия запасаемая в конденсаторе
V - напряжение конденсатора (в Вольтах)
C - ёмкость конденсатора (в Фарадах)

Энергия запасаемая при последовательном и параллельном соединении конденсаторов равна.

Кинетическая энергия снаряда

m - масса снаряда (в килограммах)
u - его скорость (в м/с)
Время разряда конденсаторов
Это время за которое конденсатор полностью разряжается. Оно равно четверти периода:

L - индуктивность (в Генри)
C - ёмкость (в Фарадах)
Время работы катушки индуктивности
Это время за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0. Оно равно верхнему полупериоду синусоиды.

L - индуктивность (в Генри)
C - ёмкость (в Фарадах)
Преимущества и недостатки
Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, а так же скорострельности орудия, возможность бесшумного выстрела (если скорость снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а так же возможность работы в любых условиях, в том числе космического пространства.

Однако, несмотря на кажущуюся простоту пушки Гаусса и её преимущества, использование её в качестве оружия сопряжено с серьёзными трудностями.

Первая трудность — низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает даже 27 %. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию.

Вторая трудность — большой расход энергии (из-за низкого КПД) и достаточно длительное время перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею). Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Третья трудность (следует из первых двух) — большой вес и габариты установки, при её низкой эффективности.

Таким образом, на сегодняшний день пушка Гаусса не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового оружия. Перспективы возможны лишь в будущем, если будут созданы компактные, но мощные источники электрического тока и высокотемпературные сверхпроводники (200—300К).

RailGun

Рельсовая пушка (англ. Railgun ) — форма оружия, основанная на превращении электрической энергии в кинетическую энергию снаряда. Другие названия: рельсовый ускоритель масс, рельсотрон, рейлган (Railgun). Не путать с пушкой Гаусса.
Принцип действия
Рельсовая пушка использует электромагнитную силу, называемую силой Ампера, чтобы разогнать электропроводный снаряд, который изначально является частью цепи. Иногда используется подвижная арматура, соединяющая рельсы. Ток I , идущий через рельсы, возбуждает магнитное поле B между ними, перпендикулярно току, проходящему через снаряд и смежный рельс. В результате происходит взаимное отталкивание рельсов и ускорение снаряда под действием силы F .
Преимущества и недостатки
С изготовлением рельсотрона связан ряд серьёзных проблем: импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испариться и разлететься, но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивностью. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверхбольших скоростей. На практике рельсы изготавливают из бескислородной меди, покрытой серебром, в качестве снарядов используют алюминиевые брусочки или проволоку, в качестве источника питания — батарею высоковольтных электрических конденсаторов, генераторы Маркса, ударные униполярные генераторы, компульсаторы, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки. В тех рельсотронах, где снарядом является проволока, после подачи напряжения на рельсы проволока разогревается и сгорает, превращаясь в токопроводную плазму, которая далее также разгоняется. Таким образом рельсотрон может стрелять плазмой, однако вследствие её неустойчивости она быстро дезинтегрируется.

Информация предоставлена исключительно в образовательных целях!
Администратор сайта не несет ответственности за возможные последствия использования предоставленной информации.

ЗАРЯЖЕННЫЕ КОНДЕНСАТОРЫ СМЕРТЕЛЬНО ОПАСНЫ!

Электромагнитная пушка (Гаусс-ган, англ. coilgun ) в ее классическом варианте представляет собой устройство, использующее свойство ферромагнетиков втягиваться в область более сильного магнитного поля для ускорения феромагнитного "снаряда".

Мой гаусс-ган:
вид сверху:


вид сбоку:


1 - разъем для подключения дистанционного спуска
2 - переключатель "заряд аккумулятора/работа"
3 - разъем для подключения к звуковой карте компьютера
4 - переключатель "заряд конденсатора/выстрел"
5 - кнопка аварийного разряда конденсатора
6 - индикатор "Заряд аккумулятора"
7 - индикатор "Работа"
8 -индикатор "Заряд конденсатора"
9 - индикатор "Выстрел"

Схема силовой части пушки Гаусса:

1 - ствол
2 - защитный диод
3 - катушка
4 - ИК-светодиоды
5 - ИК-фототранзисторы

Основные элементы конструкции моей электромагнитной пушки :
аккумулятор -
я использую два литий-ионных аккумулятора SANYO UR18650A формата 18650 от ноутбука емкостью 2150 мАч, включенных последовательно:
...
Предельное напряжение разряда этих аккумуляторов составляет 3,0 В.

преобразователь напряжения для питания цепей управления -
Напряжение с батарей поступает на повышающий преобразователь напряжения на микросхеме 34063, который повышает напряжение до 14 В. Затем напряжение поступает на преобразователь для заряда конденсатора, а стабилизированное до 5 В микросхемой 7805 - для питания цепи управления.

преобразователь напряжения для заряда конденсатора -
повышающий преобразователь на базе таймера 7555 и MOSFET -транзистора ;
- это N -канальный MOSFET -транзистор в корпусе TO-247 с максимально допустимым напряжением "сток-исток" V DS = 500 вольт, максимальным импульсным током стока I D = 56 ампер и типичным значением сопротивления "сток-исток" в открытом состоянии R DS(on) = 0,33 ома.

Индуктивность дросселя преобразователя влияет на его работу:
слишком малая индуктивность определяет низкую скорость заряда конденсатора;
слишком высокая индуктивность может привести к насыщению сердечника.

В качестве генератора импульсов (oscillator circuit ) для преобразователя (boost converter ) можно использовать микроконтроллер (например, популярный Arduino ), который позволит реализовать широтно-импульсную модуляцию (ШИМ, PWM ) для управления скважностью импульсов.

конденсатор (coil cap(acitor)) -
электролитический конденсатор на напряжение несколько сотен вольт.
Ранее я использовал конденсатор К50-17 от советской внешней фотовспышки емкостью 800 мкФ на напряжение 300 В:

Недостатком этого конденсатора являются, по моему мнению, невысокое рабочее напряжение, повышенный ток утечки (приводит к более долгой зарядке) и возможно завышенная емкость.
Поэтому я перешел на использование импортных современных конденсаторов:

SAMWHA на напряжение 450 В емкостью 220 мкФ серии HC . HC - это стандартная серия конденсаторов SAMWHA , существуют и другие серии: HE - работающие в более широком температурном диапазоне, HJ - с увеличенным временем жизни;

PEC на напряжение 400 В емкостью 150 мкФ.
Также я испытывал третий конденсатор на напряжение 400 В емкостью 680 мкФ, приобретенный в интернет-магазине dx.com -

В итоге я остановился на использовании конденсатора PEC на напряжение 400 В емкостью 150 мкФ .

Для конденсатора также важно его эквивалентное последовательное сопротивление (ESR ).

переключатель -
силовой переключатель SA предназачен для коммутирования заряженного конденсатора C на катушку L :

в качестве переключателя можно использовать либо тиристоры, либо IGBT -транзисторы:

тиристор -
я использую силовой тиристор ТЧ125-9-364 с управлением по катоду
внешний вид

размеры

- тиристор быстродействующий штыревого исполнения: "125" означает максимально допустимый действующий ток (125 А); "9" означает класс тиристора, т.е. повторяющееся импульсное напряжение в сотнях вольт (900 В).

Использование тиристора в качестве ключа требует подбора емкости конденсаторной батареи, так как затянутый импульс тока приведет к втягиванию пролетевшего центр катушки снаряда обратно - "suck-back effect" .

IGBT-транзистор -
применение в качестве ключа IGBT -транзистора позволяет не только замыкать, но и размыкать цепь катушки. Это позволяет прерывать ток (и магнитное поле катушки) после пролета снаряда через центр катушки, иначе бы снаряд втягивался назад, в катушку, и, следовательно, замедлялся. Но размыкание цепи катушки (резкое убывание тока в катушке) приводит к возникновению импульса высокого напряжения на катушке в соответствии с законом электромагнитной индукции $u_L = {L {{di_L} \over {dt}} }$. Для защиты ключа-IGBT -транзистора необходимо использовать дополнительные элементы:

VD tvs - диод (TVS diode ), создающий путь току в катушке при размыкании ключа и гасящий резкий бросок напряжения на катушке
R dis - разрядный резистор (discharge resistor ) - обеспечивает затухание тока в катушке (поглощает энергию магнитного поля катушки)
C rs ringing suppression capacitor ), предотвращающий возникновение импульсов перенапряжения на ключе (может дополняться резистором, образуя RC-snubber )

Я использовал IGBT -транзистор IRG48BC40F из популярной серии IRG4 .

катушка (coil) -
катушка намотана на пластиковом каркасе медным проводом. Омическое сопротивление катушки составляет 6,7 Ом. Ширина многослойной намотки (внавал) $b$ равна 14 мм, в одном слое около 30 витков, максимальный радиус - около 12 мм, минимальный радиус $D$ - около 8 мм (средний радиус $a$ - около 10 мм, высота $c$ - около 4 мм), диаметр провода - около 0,25 мм.
Параллельно катушке включен диод UF5408 (supression diode ) (пиковый ток 150 А, пиковое обратное напряжение 1000 В), гасящий импульс напряжения самоиндукции при прерывании тока в катушке.

ствол (barrel) -
сделан из корпуса шариковой ручки.

снаряд (projectile) -
Параметры испытательного снаряда - отрезок гвоздя диаметром 4 мм (диаметр ствола ~ 6 мм) и длиной 2 см (объем снаряда составляет 0,256 см 3 , а масса $m$ = 2 грамма, если принять плотность стали 7,8 г/см 3). Массу я вычислял, представив снаряд как совокупность конуса и цилиндра.

Материал снаряда обязан быть ферромагнетиком .
Также материал снаряда должен иметь как можно более высокий порог магнитного насыщения - значение индукции насыщения $B_s$ . Одним из лучших вариантов является обычное магнитомягкое железо (например, обычная незакаленная сталь Ст. 3 - Ст. 10) с индукцией насыщения 1,6 - 1,7 Тл. Гвозди изготавливают из низкоуглеродистой термически необработанной стальной проволоки (сталь марок Ст. 1 КП, Ст. 2 КП, Ст. 3 ПС, Ст. 3 КП).
Обозначение стали:
Ст. - углеродистая сталь обыкновенного качества;
0 - 10 - процентное содержание углерода, увеличенное в 10 раз. С увеличением содержания углерода снижается индукция насыщения $B_s$.

А самым эффективным является сплав "пермендюр ", но он слишком экзотический и дорогой. Этот сплав состоит из 30-50 % кобальта, 1,5-2 % ванадия и остальное - железо. Пермендюр обладает наивысшей из всех известных ферромагнетиков индукцией насыщения $B_s$ до 2,43 Тл.

Также желательно, чтобы материал снаряда имел как можно более низкую проводимость . Это связано с тем, что возникающие в переменном магнитном поле в проводящем стержне вихревые токи, которые приводят к потерям энергии.

Поэтому в качестве альтернативы снарядам - обрезкам гвоздей я испытал ферритовый стержень (ferrite rod ), взятый из дросселя с материнской платы:

Аналогичные катушки встречаются и в компьютерных блоках питания:

Внешний вид катушки с ферритовым сердечником:

Материал стержня (вероятно, никель-цинковый (Ni-Zn ) (аналог отечественных марок феррита НН/ВН) ферритовый порошок) является диэлектриком , что исключает возникновение вихревых токов. Но недостатком феррита является низкая индукция насыщения $B_s$ ~ 0,3 Тл.
Длина стержня составила 2 см:

Плотность никель-цинковых ферритов составляет $\rho$ = 4,0 ... 4,9 г/см 3 .

Сила притяжения снаряда
Вычисление силы, действующей на снаряд в пушке Гаусса, является сложной задачей.

Можно привести несколько примеров вычисления электромагнитных сил.

Сила притяжения кусочка ферромагнетика к катушке-соленоиду с ферромагнитным сердечником (например, якоря реле к катушке) определяется выражением $F = {{{{(w I)}^2} \mu_0 S} \over {2 {{\delta}^2}}}$ , где $w$ - количество витков в катушке, $I$ - ток в обмотке катушки, $S$ - площадь сечения сердечника катушки, $\delta$ - расстояние от сердечника катушки до притягиваемого кусочка. При этом пренебрегаем магнитным сопротивлением ферромагнетиков в магнитной цепи.

Сила, втягивающая ферромагнетик в магнитное поле катушки без сердечника, определяется выражением $F = {{w I} \over 2} {{d\Phi} \over {dx}}$.
В этой формуле ${{d\Phi} \over {dx}}$ - скорость изменения магнитного потока катушки $\Phi$ при перемещении кусочка ферромагнетика вдоль оси катушки (изменении координаты $x$), эту величину вычислить достаточно сложно. Вышеуказанная формула может быть переписана в виде $F = {{{I}^2} \over 2} {{dL} \over {dx}}$, где ${{dL} \over {dx}}$ - скорость изменения индуктивности катушки $L$.

Порядок выполнения выстрела из гаусс-гана
Перед выстрелом конденсатор необходимо зарядить до напряжения 400 В. Для этого необходимо включить выключатель (2) и перевести переключатель (4) в положение "ЗАРЯД". Для индикации напряжения к конденсатору через делитель напряжения подключен индикатор уровня от советского магнитофона. Для аварийного разряда конденсатора без подключения катушки служит резистор сопротивлением 6,8 кОм мощностью 2 Вт, подключаемый с помощью выключателя (5) к конденсатору. Перед выстрелом необходимо перевести переключатель (4) в положение "ВЫСТРЕЛ". Для избежания влияния дребезга контактов на формирование импульса управления кнопка "Выстрел" подключается к схеме защиты от дребезга на переключающем реле и микросхеме 74HC00N . С выхода этой схемы сигнал запускает одновибратор, который вырабатывает одиночный импульс настраиваемой длительности. Этот импульс поступает через оптопару PC817 на первичную обмотку имульсного трансформатора, обеспечивающего гальваническую развязку цепи управления от силовой цепи. Импульс, формируемый на вторичной обмотке, открывает тиристор и конденсатор разряжается через него на катушку.

Ток, протекающий через катушку при разряде, создает магнитное поле, втягивающее ферромагнитный снаряд и придающее снаряду некоторую начальную скорость. После вылета из ствола снаряд дальше летит по инерции. При этом следует учитывать то, что после пролета снаряда через центр катушки магнитное поле будет замедлять снаряд, поэтому импульс тока в катушке не должен быть затянут, иначе это приведет к уменьшению начальной скорости снаряда.

Для дистанционного управления выстрелом к разъему (1) подключается кнопка:

Определение скорости вылета снаряда из ствола
При выстреле дульная скорость и энергия сильно зависят от начального положения снаряда в стволе.
Для настройки оптимального положения необходимо измерять скорость вылета снаряда из ствола. Для этого я использовал оптический измеритель скорости - два оптических датчика (ИК-светодиоды VD1 , VD2 + ИК-фототранзисторы VT1 , VT2 ) размещены в стволе на расстоянии $l$ = 1 см друг от друга. При пролете снаряд закрывает фототранзисторы от излучения светодиодов, а компараторы на микросхеме LM358N формируют цифровой сигнал:


При перекрытии светового потока датчика 2 (ближайшего к катушке) загорается красный ("RED ") светодиод, а при перекрытии датчика 1 - зеленый ("GREEN ").

Этот сигнал преобразуется к уровню в десятые доли вольта (делители из резисторов R1 ,R3 и R2 ,R4 ) и подается на два канала линейного (не микрофонного!) входа звуковой карты компьютера с помощью кабеля с двумя штекерами - штекером, подключаемого к разъему гаусс-гана, и штекером, втыкаемым в гнездо звуковой карты компьютера:
делитель напряжения:


LEFT - левый канал; RIGHT - правый канал; GND - "земля"

штекер, подключаемый к пушке:

5 - левый канал; 1 - правый канал; 3 - "земля"
штекер, подключаемый к компьютеру:

1 - левый канал; 2 - правый канал; 3 - "земля"

Для обработки сигнала удобно использовать бесплатную программу Audacity ().
Так как на каждом канале входа звуковой карты включен последовательно с остальной цепью конденсатор, то фактически вход звуковой карты представляет собой RC -цепочку, и записанный компьютером сигнал имеет сглаженный вид:


Характерные точки на графиках:
1 - пролет передней части снаряда мимо датчика 1
2 - пролет передней части снаряда мимо датчика 2
3 - пролет задней части снаряда мимо датчика 1
4 - пролет задней части снаряда мимо датчика 2
Я определяю начальную скорость снаряда по разнице времени между точками 3 и 4 с учетом того, что расстояние между датчиками составляет 1 см.
В приведенном примере при частоте оцифровки $f$ = 192000 Гц для количества сэмплов $N$ = 160 скорость снаряда $v = {{l f} \over {N}} = {{1920} \over 160}$ составила 12 м/с.

Скорость вылета снаряда из ствола зависит от его начального положения в стволе, задаваемого смещением задней части снаряда от края ствола $\Delta$:

Для каждой емкости батареи $C$ оптимальное положение снаряда (значение $\Delta$) различно.

Для вышеописанного снаряда и емкости батареи 370 мкФ я получил следующие результаты:

При емкости батареи 150 мкФ результаты были следующими:

Максимальная скорость снаряда составила $v$ = 21,1 м/с (при $\Delta$ = 10 мм), что соответствует энергии ~0,5 Дж -

При испытании снаряда - ферритового стержня выяснилось, что он требует намного более глубокого расположения в стволе (намного большей величины $\Delta$).

Законы об оружии
В Республике Беларусь изделия с дульной энергией (muzzle energy ) не более 3 Дж приобретаются без соответствующего разрешения и не регистрируются.
В Российской Федерации изделия с дульной энергией менее 3 Дж не считаются оружием.
В Великобритании оружием не считаются изделия с дульной энергии не более 1,3 Дж.

Определение разрядного тока конденсатора
Для определения максимального разрядного тока конденсатора можно использовать график напряжения на конденсаторе при разряде. Для этого можно подключиться к разъему, на который через делитель подается напряжение на конденсаторе, уменьшенное в $n$ = 100 раз. Ток разряда конденсатора $i = {n} \cdot {C \cdot {{du} \over {dt}}} = {{{m_u} \over {m_t}} C tg \alpha}$, где $\alpha$ - угол наклона касательной к кривой напряжения конденсатора в данной точке.
Вот пример такой разрядной кривой напряжения на конденсаторе:

В этом примере $C$ = 800 мкФ, $m_u$ = 1 В/дел., $m_t$ = 6,4 мс/дел., $\alpha$ = -69,4°, $tg \alpha = -2,66 $, что соответствует току в начале разряда $i = {100} \cdot {800} \cdot {10^{-6}} \cdot {1 \over {6,4 \cdot {10^{-3}}}} \cdot (-2,66) = -33,3$ ампера.

Продолжение следует