Что такое облачность и от чего она зависит? Определение облачности Оценка формирования облачности.

Понятие «облачность» подразумевает количество наблюдаемых в одном месте облаков. Облаками, в свою очередь, называются атмосферные явления, сформированные взвесью водяного пара. Классификация облаков насчитывает множество их видов, разделяемых по размерам, форме, природе образования и высоте расположения.

В бытовой сфере для измерения облачности используются специальные термины. Развернутые шкалы измерения данного показателя применяются в метеорологии, морском деле и авиации.

Метеорологи используют десятибалльную шкалу облачности, которая иногда выражается в процентах покрытия обозримого небесного пространства (1 балл - 10% покрытия). Кроме того, высота образования облаков разделяется на верхний и нижний ярусы. Такая же система используется и в морском деле. Авиационные метеорологи используют систему из восьми октант (частей обозримого неба) с более подробным указанием высоты расположения облаков.

Для определения нижней границы облаков используется специальный прибор. Но острую необходимость в нём испытывают только авиационные метеостанции. В остальных случаях производится визуальная оценка высоты.

Типы облачности

Облачность играет важную роль в формировании погодных условий. Облачный покров предотвращает нагрев поверхности Земли, и продлевает процесс её охлаждения. Облачный покров существенно снижает суточные колебания температуры. В зависимости от количества облаков в определённое время выделяется несколько типов облачности:

  1. «Ясно или малооблачно» соответствует облачности в 3 балла в нижнем (до 2 км) и среднем ярусе (2 - 6 км) или любое количество облаков в верхнем (выше 6 км).
  2. «Меняющаяся или переменная» - 1-3/4-7 баллов в нижнем или среднем ярусе.
  3. «С прояснениями» - до 7 баллов суммарной облачности нижнего и среднего яруса.
  4. «Пасмурно, облачно» - 8-10 баллов в нижнем ярусе или не просвечивающиеся облака в среднем, а также с атмосферными осадками в виде дождя или снега.

Виды облаков

Всемирная классификация облаков выделяет множество видов, каждый из которых обладает своим латинским названием. В ней учитывается форма, происхождение, высота образования и ряд других факторов. Основу классификации составляют несколько видов облаков:

  • Перистые облака представляют собой тонкие нити белого цвета. Располагаются на высоте от 3 до 18 км в зависимости от широты. Состоят из падающих кристаллов льда, которым и обязаны своим внешним видом. Среди перистых на высоте свыше 7км облака подразделяются на перисто-кучевые, высоко-слоистые, которые обладают невысокой плотностью. Ниже на высоте около 5км располагаются высоко-кучевые облака.
  • Кучевые облака это плотные образования белого цвета и значительной высоты (иногда более достигает 5 км). Располагаются чаще всего в нижем ярусе с вертикальным развитием в средний. Кучевые облака на верхней границе среднего яруса зовутся высококучевыми.
  • Кучево-дождливые, ливневые и грозовые облака, как правило, располагаются невысоко над поверхностью Земли 500-2000 метров, характерны выпадением атмосферных осадков в виде дождя, снега.
  • Слоистые облака представляют собой слой взвеси небольшой плотности. Они пропускают свет солнца и луны и находятся на высоте между 30 и 400 метров.

Перистые, кучевые и слоистые типы смешиваясь, образуют другие виды: перисто-кучевые, слоисто-кучевые, перисто-слоистые. Кроме основных видов облаков и существуют и другие, менее распространённые: серебристые и перламутровые, лентикулярные и вымеобразные. А облака, образованные пожарами или вулканами называются пирокумулятивными.

Облака представляют собой видимую совокупность взвешенных капель воды или кристаллов льда па некоторой высоте над земной поверхностью. Наблюдения над облачностью включают определение количества облаков. их формы и высоты нижней границы над уровнем станции.

Количество облаков оценивается по десятибалльной шкале, при этом различают три состояния неба: ясное (0... 2 балла), и пасмурное (3... 7 баллов) н пасмурное (8... 10 баллов).

При всем разнообразии внешнего вида выделяют 10 основных форм облаков. которые в зависимости от высоты разделяют на ярусы. В верхнем ярусе (выше б км) располагаются три формы облаков: перистые, перисто-кучевые и перисто-слоистые. Более плотные на вид высоко-кучевые и высоко-слоистые облака, основания которых находятся на высоте 2... б км, относятся к среднему ярусу, а слоисто-кучевые.,слоистые и слоисто-дождевые - к нижнему ярусу. В нижнем ярусе (ниже 2 км) располагаются также основания кучевых ее кучево-дождевых облаков. Эта облака занимает по вертикали несколько ярусов и составляют отдельную группу облаков вертикального развития.

Обычно производится двойная оценка облачности: вначале определяется общая облачность и принимаются в расчет все облака- видимые ха небесном своде, затем - нижняя облачность, где учитываются только облака нижнего яруса (слоистые, слоисто-кучевые. слоисто-дождевые) и облака вертикального развития.

Определяющую роль в формировании облачности играет циркуляция. В результате циклонической деятельности и переноса воздушных масс с Атлантики облачность в Ленинграде значительна в течение всего года и особенно в осенне-зимний период. Частое прохождение циклонов в это время, а вместе с ними и фронтов, вызывает, как правило, значительное увеличение нижней облачности, снижение высоты нижней границы облаков и частое выпадение осадков. В ноябре ее декабре количество облачности наибольшее в году и составляет в среднем многолетнем 8,6 баллов по общей и 7,8... 7,9 баллов по нижней облачности (табл. 60). Начиная с января облачность (общая и нижняя) постепенно уменьшается, достигая наименьших значений в мае-июне. Но даме в эта время небо в среднем более чем наполовину закрыто облаками разных форм (6.1... 6,2 балла по общей облачности). Доля облаков нижнего яруса в обшей облачности велика в течении всего года и имеет четко выраженный годовой ход (табл. 61). В теплое полугодие она уменьшается, а зимой, когда особенно велика повторяемость облаков слоистых форм, доля нижней облачности возрастает.

Суточный ход обшей и нижней облачности зимой выражен довольно слабо. Более отчетлив ох в теплый период года. В это время отмечается два максимума: основной-в послеполуденные часы, обусловленный развитием конвективных облаков, и менее выраженный - в ранние утренние часы, когда под влиянием радиационного охлаждения образуются облака слоистых форм (см. табл. 45 приложения).

В Ленинграде преобладает в течение всего года пасмурная погода. Повторяемость ее по общей облачности составляет в холодный период 75... 85 %, а в теплый -50... 60% (см. табл. 46 приложения). По нижней облачности пасмурное состояние небе наблюдается также достаточно часто (70... 75 %) и только к лету уменьшается до 30%.

Об устойчивости пасмурной погоды позволяет судить число пасмурных дней, в течение которых преобладает облачность 8... 10 баллов. В Ленинграде за год таких дней отмечается 171 по общей и 109-по нижней облачности (см. табл. 47 приложения). В зависимости от характера атмосферной циркуляции число пасмурных дней изменяется в очень широких пределах.

Так, в 1942 г. по нижней облачности их было почти в два раза меньше, а в 1962 г. в полтора раза больше среднего значения.

Больше всего пасмурных дней в ноябре и декабре (22-по обшей облачности и 19-по нижней). В теплый период число их резко уменьшается до 2... 4 за месяц, хо в отдельные годы даже по нижней облачности в летние месяцы бывает до 10 пасмурных дней (июнь 1953 г., август 1964 г.).

Ясная погода осенью и зимой в Ленинграде-явление Редкое. Обычно устанавливается она при вторжении воздушных масс с Арктики и за месяц бывает только 1... 2 ясных дня. Лишь весной и летом повторяемость ясного неба увеличивается до 30 % по общей облачности.

Значительно чаще (50% случаев) такое состояние неба наблюдается по нижней облачности, а ясных дней летом может быть в среднем до девяти в месяц. В апреле 1939 г. их было даже 23.

Для теплого периода также характерно полуясное состояние неба (20... 25%) как по обшей облачности, так и по нижней за счет наличия днем конвективных облаков.

О степени изменчивости числа ясных и пасмурных дней, а также повторяемости ясного и пасмурного состояния неба можно судить по средним квадратическим отклонениям, которые приведены в табл. 46, 47 приложения.

Облака различных форм оказывают не одинаковое влияние на приход солнечной радиации, продолжительность солнечного сияния и соответственно на температуру воздуха и почвы.

Для Ленинграда в осенне-зимний период характерно сплошное покрытие неба облаками нижнего яруса слоисто-кучевых и слоисто-дождевых форм (см. табл. 48 приложения). Высоте их нижнего основания находится обычно на уровне 600... 700 м и около 400 м над поверхностью земли соответственно (см. табл. 49 приложения). Под ними на высотах около 300 м могут располагаться клочья разорванных облаков. Зимой часты и самые низкие (высотой 200... 300 м) слоистые облака, повторяемость которых в это время наибольшая в году 8... 13%.

В теплый период нередко формируются облака кучевых форм с высотой основания 500... 700 м. Наряду со слоисто-кучевыми облаками характерными становятся кучевые и кучево-дождевые, а наличие больших просветов в облаках этих форм позволяет видеть облака среднего и верхнего ярусов. В результате чего повторяемость высоко-кучевых и перистых облаков летом более чем в два раза превышает повторяемость их в зимние месяцы и достигает 40... 43%.

Повторяемость отдельных форм облаков изменяется не только в течение года, но и в течение суток. Особенно значительны изменения в теплый период для кучевых и кучево-дождевых облаков. Наибольшего развития они достигают, как правило, в дневные часы и повторяемость их в это время максимальная за сутки. Вечером облака кучевых форм рассеиваются, и в ночные и утренние часы охи наблюдаются редко. Повторяемость преобладающих форм облаков от срока к сроку в холодный период меняется незначительно.

6.2. Видимость

Дальность видимости реальных объектов-это то расстояние, на котором видимый контраст между объектом и фоном становятся равным пороговому контрасту человеческого глаза; она зависит от характеристик объекта и фона, освещенности прозрачности атмосферы. Метеорологическая дальность видимости является одной из характеристик прозрачности атмосферы, она связана с другими оптическими характеристиками.

Метеорологической дальностью видимости (МДВ) Sm называется то наибольшее расстояние, с которого в светлое время суток можно различить невооруженным глазок на фоне неба у горизонта (пли на фоне воздушной дымки) абсолютно черный объект достаточно больших угловых размеров (более 15 угловым минут), в ночное время - наибольшее расстояние, па котором аналогичный объект можно было бы обнаружить при повышении освещенности до уровня дневной. Именно эту величину, выраженную в километрах или метрах, определяют ив метеостанциях либо визуально, либо с помощью специальных приборов.

При отсутствии метеорологических явлений, ухудшающих видимость, МДВ составляет не менее 10 км. Дымка, туман, метель, осадки и другие метеорологические явления уменьшают метеорологическую дальность видимости. Так, в тумане она менее одного километра, в сильных снегопадам - сотни метров, при метелях может быть меньше 100 м.

Снижение МДВ отрицательно впаяет на работу всех видов транспорта, затрудняет морскую и речную навигацию, осложняет роботы в порту. Для взлета и посадки самолетов МДВ не должна быть ниже установленных предельных значений (минимумов).

Опасна пониженная МДВ для автомобильного транспорта: при видимости менее одного километра аварий автотранспорта бывает в средней в два с половиной раза больше, чем в дни с хорошей видимостью. Кроме того, при ухудшении видимости существенно снижается скорость автомобилей.

Понижение видимости сказывается также на условиях работы промышленных предприятий и строек, особенно имеющих сеть подъездных путей.

Плохая видимость ограничивает возможность обзора города и окрестностей для туристов.

МДВ в Ленинграде имеет хорошо выраженный годовой ход. Наиболее прозрачна атмосфера с мая по август: в этот период повторяемость хорошей видимости (10 км и более) составляет около 90 %, а доля наблюдений с видимостью менее 4 км не превышает одного процента (рис. 37). Эта связано с уменьшением в теплый сезон повторяемости явлений, ухудшающих видимость, а также с более интенсивной, чем в холодный период, турбулентностью, способствующей переносу различных примесей в более высокие слои воздуха.

Наихудшая видимость в городе отмечается зимой (декабрь-февраль), когда лишь около половины наблюдений приходится на хорошую видимость, а повторяемость видимости менее 4 км возрастает до 11 %. В этот сезон велика повторяемость атмосферных явлений, ухудшающих видимость - дымок и осадков, нередки случаи инверсионного распределения температуры. способствующего накоплению различных примесей о приземном слое.

Переходные сезоны занимают промежуточное положение, что хорошо иллюстрируется графиком (рис.37). Весной и осенью особенно возрастает по сравнению с летом повторяемость более низкой градации видимости (4... 10 км), что связано с увеличением числа случаев с дымкой в городе.

Ухудшение видимости до значений менее 4 км в зависимости от атмосферных явлений показано в табл. 62. В январе наиболее часто такое ухудшение видимости происходит за счет дымки, летом - в осадках, а весной и осенью в осадках, дымке и тумане. Ухудшение видимости в указанных пределах вследствие наличия других явлений встречается гораздо реже.

Зимой наблюдается четкий суточный ход МДВ. Хорошая видимость (Sm , 10 км и более) имеет наибольшую повторяемость вечером и ночью, наименьшую - днем. Аналогичен ход видимости менее четырех километров. Дальность видимости 4... 10 км имеет обратный суточный ход с максимумом в дневные часы. Это можно объяснить повышением в дневные часы концентрации замутняющих воздух частиц, выбрасываемых в атмосферу промышленными и энергетическими предприятиями, городским транспортом. В переходные сезоны суточный ход выражен слабее. Повышенная повторяемость ухудшений видимости (менее 10 км) сдвигается на утренние часы. Летом суточный ход МДВ почта не прослеживается.

Сравнение данных наблюдений в крупных городах и в сельской местности показывает, что в городах прозрачность атмосферы снижена. Это вызвано большим количеством выбросов продуктов загрязнения на их территории, пылью, поднимаемой городским транспортом.

6.3. Туман и дымка

Туман - совокупность взвешенных в воздухе капель воды или кристаллов льда, ухудшающих видимость до значений менее 1 км.

Туман в городе относится к числу опасных атмосферных явлений. Ухудшение видимости при туманах в значительной степени затрудняет нормальную работу всех видов транспорта. Кроме того, близкая к 100% относительная влажность воздуха в туманах способствует усилению коррозии металлов и металлоконструкций и старению лакокрасочных покрытий. В каплях воды, образующих туман, растворяются вредные примеси, выбрасываемые промышленными предприятиями. Осаждаясь затем на стенах зданий и сооружений, они сильно загрязняют их и сокращают срок службы. Из-за большой влажности и насыщенности вредными примесями городские туманы представляют определенную опасность для здоровья людей.

Туманы в Ленинграде определяются особенностями атмосферной циркуляции Северо-Запада Европейской территории Союза, в первую очередь, развитием циклонической деятельности в течение всего года, но особенно в холодный период. При перемещении относительно теплого и влажного морского воздуха с Атлантики на более холодную подстилающую поверхность суши и его охлаждении образуются адвективные туманы. Кроме того, возможно возникновение в Ленинграде радиационных туманов местного происхождения, связанных с охлаждением слоя воздуха от земной поверхности в ночные часы при ясной погоде. Другие виды туманов, как правило, являются частными случаями этих двух основных.

В Ленинграде отмечается в среднем за год 29 дней с туманами (табл. 63). В отдельные годы в зависимости от особенностей атмосферной циркуляции число дней с туманом может значительно отличаться от среднего многолетнего. За период с 1938 по 1976 г. наибольшее числа дней с туманом за год было равно 53 (1939 г.), а наименьшее-10 (1973 г.). Изменчивость числа дней с туманом в отдельные месяцы представлена средним квадратическим отклонением, значения которого лежат в пределах от 0,68 дней в июле до 2,8 дней в марте. Наиболее благоприятные условия для развития туманов в Ленинграде создаются в холодный период (с октября по март), совпадающий с периодом усиления циклонической деятельности,

на который приходится 72 %о годового числа дней с туманом. В это время за месяц отмечается в среднем 3... 4 дня с туманом. Как правило, преобладают туманы адвективные, благодаря интенсивному и частоту выносу теплого влажного воздуха западными и того-западными потоками на холодную поверхность суши. Число дней за холодный период с адвективными туманами, по данным Г. И. Осиповой , составляет около 60 % их общего числа в этот период.

Гораздо реже туманы в Ленинграде образуются в теплое полугодие. Число дней с ними за месяц изменяется от 0,5 в июне, июле до 3 в сентябре, а в 60... 70 %о лет в ионе, июле туманы совсем не наблюдаются (табл. 64). Нo в то же время бывают годы, когда в августе наблюдается до 5... 6 дней с туманом.

Для теплого периода, в отличие от холодного, наиболее характерными являются радиационные туманы. На них приходится около 65 %о дней с туманами за теплый период, и образуются они обычно в устойчивых воздушных массах при тихой погоде или слабом ветре. Как правило, летние радиационные туманы в Ленинграде возникают ночью или перед восходом солнца, днем такой туман быстро рассеивается.

Самое большое число дней с туманом за месяц, равное 11, наблюдалось в сентябре 1938 г. Однако даже в любой месяц холодного периода, когда туманы отмечаются наиболее часто, омы бывают не каждый год. В декабре, например, они не наблюдаются примерно один раз в 10 лет, а в феврале - один раз в 7 лет.

Средняя суммарная продолжительность туманов в Ленин-граде за год составляет 107 ч. В холодный период туманы не только более часты, чем в теплый, но и более длительны. Суммарная продолжительность их, равная 80 ч, в три раза больше, чем в теплое полугодие. В годовом ходе наибольшую продолжи-тельность туманы имеют в декабре (18 ч), а наименьшая (0,7ч) отмечается в нюне (табл. 65).

Продолжительность туманов в день с туманом, характеризующая их устойчивость, в холодный период также несколько больше, чем в теплый (табл. 65), а в среднем за год она составляет 3,7 ч.

Непрерывная продолжительность туманов (средняя и наибольшая) в различные месяцы приведена в табл. 66.

Суточный ход продолжительности туманов во все месяцы года выражен довольно четко: продолжительности туманов второй половины ночи и первой половины дня больше продолжи-тельности туманов остальной часта суток. В холодное полугодие туманы чаще всего (35 ч) отмечаются с 6 до 12ч (табл. 67), а в теплое- после полуночи и наибольшего развитии достигают в предрассветные часы. Наибольшая продолжительность их (14 ч) приходится на ночные часы.

Существенное влияние на образование и особенно на сохранение тумана в Ленинграде оказывает отсутствие ветра. Усиление ветра приводит к рассеянию тумана или переходу его в низкие облака.

В большинстве случаев образование адвективных туманов в Ленинграде, как в холодное, так и в теплое полугодие, вызвана поступлением воздушных масс с западным потоком. Менее вероятно возникновение тумана при северном и северо-восточном ветре.

Повторяемость туманов и их продолжительность обладают большой изменчивостью в пространстве. Помимо погодных условий на ох образование оказывает влияние такие характер подстилающей поверхности, рельеф, близость водоема. даже в пределах Ленинграда в разных его районах число дней с туманом не одинаково. Если в центральной части города число дней с п--ханом за год составляет 29, то на ст. Невская, расположенной вблизи Невской губы, их число увеличивается до 39. В пересеченной возвышенной местности пригородов Карельского перешейка, особенно благоприятной для образования туманов число дней с туманом в 2... 2,5 разе больше, чем в городе.

Дымка в Ленинграде наблюдается значительно чаще, чем туман. Она отмечается в среднем за год каждый второй день (табл. 68) и может быть не только продолжением тумана при его рассеянии, но и возникать как самостоятельное атмосферное явление. Горизонтальная видимость при дымке в зависимости от ее интенсивности составляет от 1 до 10 км. Условия для образования дымки такие же. как и для туман,. поэтому чаше всего она возникает в холодное полугодие (62 % общего числа дней с дымкой). Ежемесячно в это время может быть 17... 21 день с дамкой, что превышает число дней с туманом в пять раз. Меньше всего дней с дымкой в мае-июле, когда число дней с ними не превышает 7... 9. В Ленинграде дней с дымкой отмечается больше, чем в прибрежной полосе (Лисий Нос, Ломоносов), и почти столько же, сколько в возвышенных пригородных районах, удаленных от залива (Воейково, Пушкин и др.) (табл. б8).

Продолжительность дымки в Ленинграде довольно большая. Ее суммарная длительность за год составляет 1897 ч (табл. 69) и в зависимости от времени года значительно меняется. В холодный период продолжительность дымки в 2,4 раза больше, чем в теплый, и составляет 1334 ч. Больше всего часов с дымкой в ноябре (261 ч), а меньше всего-в мае-июле (52... 65ч).

6.4. Гололедно-изморозевые отложения.

Частые туманы и выпадение жидких осадков в холодный период года способствуют появлению отложений льда на деталях сооружений, телевизионных и радиомачтах, на ветвях и стволах деревьев и т. д.

Отложения льда различаются по своей структуре и внешнему виду, но практически выделяют такие виды обледенения, как гололед, изморозь, отложение мокрого снега и сложное отложение. Каждое из них при любой интенсивности существенно осложняет работу многих отраслей городского хозяйства (энергосистем и линий связи, садово-паркового хозяйства, авиации, железнодорожного и автомобильного транспорта), а при значительных размерах относится к числу опасных атмосферных явлений.

Исследование синоптических условий образования обледенений на Северо-Западе Европейской территории СССР, в том числе и в Ленинграде , показало, что гололед и сложное отложение имеют в основном фронтальное происхождение и наиболее часто связаны с теплыми фронтами. Образование гололеда возможно и в однородной воздушной массе, но случается это редко и процесс обледенения здесь протекает обычно медленно. В отличие от гололеда изморозь является, как правило, внутримассовым образованием, которое возникает чаще всего в антициклонах.

Наблюдения над обледенением ведутся в Ленинграде визуально с 1936 г. Кроме них, с 1953 г. проводятся наблюдения за гололедно-изморозевыми отложениями на проводе гололедного станка. Помимо определения вида обледенений эти наблюдения включают измерение размера и массы отложений, а также определение стадий роста, устойчивого состояния и разрушения отложений от момента их появления на гололедном станке до полного исчезновения.

Обледенение проводов в Ленинграде происходит в период с октября по апрель. Даты образования и разрушения обледенения для различных видов указаны в табл. 70.

За сезон в городе бывает в среднем 31 день с обледенением всех видов (см. табл. 50 приложения). Однако в сезон 1959-60 г. число дней с отложениями почти в два раза превысило среднее многолетнее значение и было наибольшим (57) за весь период инструментальных наблюдений (1963-1977 гг.). Были и такие сезоны, когда гололедно-изморозевые явления отмечались сравнительно редко, по ]б... 17 днем за сезон (1964-65, 1969-70, 1970-71 гг.).

Чаще всего обледенение проводов происходит в декабре-феврале с максимумом а январе (10,4 дня). В эти месяцы обледенение бывает почти ежегодно.

Из всех видов обледенения в Ленинграде наиболее часто отмечается кристаллическая изморозь. В среднем за сезон с кристаллической изморозью бывает 18 дней, но в сезон 1955-56 г. число дней с изморозью достигло 41. Значительно реже, чем кристаллическая изморозь, наблюдается гололед. На него приходится всего восемь дней за сезон и лишь в сезоне 1971-72 г. отмечено 15 дней с гололедом. Остальные виды обледенения встречаются сравнительно редко.

Обычно обледенение проводов в Ленинграде продолжается менее суток и лишь в 5 °/о случаев длительность обледенения превышает двое суток (табл. 71). Дольше других отложений (в среднем 37 ч) на проводах удерживается сложное отложение (табл. 72). Длительность гололеда обычно составляет 9 ч,но в декабре 1960 r. гололед наблюдался непрерывно в течение 56 ч. Процесс нарастания гололеда в Ленинграде длится в сред-нем около 4 ч. Самая большая непрерывная продолжительность сложного отложения (161 ч) отмечена в январе 1960 г., а кристаллической изморози - в январе 1968 г. (326 ч) .

Степень опасности обледенения характеризуется не только частотой повторения гололедно-изморозевых отложений и дли-тельностью их воздействия, но и величиной отложения, под которой понимаются размеры отложения по диаметру (большому в малому) и масса. С увеличением размеров и массы отложений льда растет нагрузка на различного рода сооружения, а при проектировании воздушных линий электропередачи и связи, как известно, гололедная нагрузка является основной и занижение ее приводят к частым авариям на линиях. В Ленинграде, по данным наблюдений на гололедном станке, размеры п масса гололедно-изморозевых отложений обычно небольшие. Во всех случаях в центральной части города диаметр гололеда не превышал 9 мм с учетом диаметра провода, кристаллической изморози - 49 мм, . сложного отложения - 19 мм. Максимальная масса, отнесенная к метру провода с диаметром 5 мм, составляет всего 91 г (см. табл. 51 приложения). Практически важным является знание вероятностных значений гололеднsх нагрузок (возможных один раз в заданное число лет). В Ленинграде на гололедном станке один раз в 10 лет нагрузка от гололедно-изморозевых отложений не превышает 60 г/м (табл. 73), что соответствует району I гололедности согласно работе .


Фактически образование гололеда и изморози на реальных объектах и на проводах действующих линий электропередачи и связи не полностью соответствует условиям обледенения на гололедном станке. Эти различия определютсяпрежде всего высотой расположения объема п проводов, а также рядом тех-ппчесгагх особенностей (конфигурацией и размером объема,
структурой его поверхности, для воздушных линий-диаметром провода, напряжением электрического тока и r. п.). По мере увеличения высоты в нижнем слое атмосферы образование гололеда и изморози, как правило, протекает гораздо интенсивнее, чем на уровне гололедового станка, а размеры и масса отложений с высотой растут. Поскольку в Ленинграде непосредственные измерения величины гололедно-изморозевых отложений на высотах отсутствуют, гололедная нагрузка в этих случаях оценивается различными расчетными методами.

Так, с использованием данных наблюдений по гололедному станку были получены максимальные вероятностные значения гололедных нагрузок на провода действующих воздушных линий электропередачи (табл. 73). Расчет выполнен для провода, который наиболее часто применяется при строительстве линий (диаметр 10 мм на высоте 10 м). Из табл. 73 видно, что в климатических условиях Ленинграда один раз в 10 лет максимальная гололедная нагрузка на такой провод составляет 210 г/м, и превышает значение максимальной нагрузки той же вероятности на гололедном станке более чем в три раза.

Для высотных сооружений и конструкций (выше 100 м) максимальные и вероятностные значения гололедных нагрузок были рассчитаны на основании данных наблюдений за облаками нижнего яруса и температурно-ветровыми условиями на стандартных аэрологических уровнях (80) (табл. 74). В отличие от облачности переохлажденные жидкие осадки играют весьма незначительную роль ля образования гололеда и изморози в нижней слое атмосферы на высоте 100... 600 м и в расчет не принимались. Из приведенных в табл. 74 данных следует, что в Ленинграде на высоте 100 м нагрузка от гололедно-изморозевых отложений, возможная один раз в 10 лет, достигает 1,5 кг/м, а на высоте 300 и 500 м превосходит это значение в два и в три раза соответственно. Такое распределение гололедных нагрузок по высотам вызвано тем, что с высотой увеличивается скорость ветра и продолжительность существования облаков нижнего яруса и в связи с этим растет количество наносимых на предмет переохлажденных капель.

В практике строительного проектирования, однако, для расчета гололедных нагрузок используется особый климатический параметр - толщина стенки гололеда . Толщина стенка гололеда выражается в милиметрах и относится к отложению льда цилиндрической формы при его наибольшей плотности (0,9 г/см 3). Районирование территории СССР по гололедности в действующих нормативных документах выполнено также для толщины стенка гололеда, но приведенной к высоте 10 м и
к диаметру провода 10 мм, при повторяемости такт отложений один раз в 5 и 10 лет. Согласно этой карте, Ленинград относится к слабогололедному району I, в котором с указанной вероятностью могут быть гололеднo-изморозевые отложения, соответствующие толщине стенки гололеда 5 мм. для перехода к другим диаметрам провода, высотам и к другой повторяемости вводятся соответствующие коэффициенты.

6.5. Гроза и град

Гроза - атмосферное явление, при котором между отдельными облаками или между облаком и землей возникают многократные электрические разряды (молния), сопровождающиеся громом. Молнии могут вызвать пожар, нанести различного рода повреждения линиям электропередача и связи, но особенно они опасны для авиации. Грозы часто сопровождаются такими не менее опасными для народного хозяйства явлениями погоды, как шквалистый ветер я интенсивные ливневые осадки, а в отдельных случаях град.

Грозовая деятельность определяется процессами атмосферной циркуляции и в значительной мере местными физико-географическими условиями: рельефом местности, близостью водоема. Она характеризуется числом дней с грозой близкой и отдаленной и продолжительностью гроз.

Возникновение грозы связано с развитием мощных кучево-дождевых облаков, с сильной неустойчивостью стратификации воздуха при высоком влагосодержании. Различают грозы, которые образуются на поверхности раздела между двумя воздушными массами (фронтальные) и в однородной воздушной массе (внутримассоовые или конвективные). Для Ленинграда характерно преобладание фронтальных гроз, в большинстве случаев возникающих их на холодных фронтах, и только в 35 % случаев (Пулково) возможно образование конвективных гроз, чаще всего летом. Несмотря на фронтальное происхождение гроз летний прогрев имеет существенное дополнительное значение. Чаще всего грозы возникают в послеполуденные часы: в период от 12 до 18 ч на них приходится 50 % всех дней. Наименее вероятны грозы в период от 24 до 6 ч.

Представление о числе дней с грозой в Ленинграде дает табл. 75. 3а год в центральной части города насчитывается 18 дней с грозой, в то время, как на ст. Невская, расположен-ной в черте города, но ближе к Финскому Заливу, число Дней уменьшается до 13, так же как в Кронштадте и Ломоносове. Такая особенность объясняется влиянием летнего морского бриза, приносящего днем относительно прохладный воздух и препятствующего образованию мощных кучевых облаков в непосредственной близости от залива. Даже сравнительно небольшое повышение местности и удаленность от водоема приводят к увеличению числа дней с грозой в окрестностях города до 20 (Воейково, Пушкин) .

Число дней с грозой - величина очень изменчивая и во времени. В 62 %о случаев число дней с грозой за отдельный год отклоняется от средней многолетней на ±5 дней, в 33 %о - на ±6... 10 дней и в 5 % - на ±11... 15 дней. В некоторые годы количество грозовых дней почти вдвое превышает среднее многолетнее значение, но бывают и такие годы, когда грозы в Ленинграде отмечаются крайне редко. Так, в 1937 г. наблюдалось 32 дня с грозой, а в 1955 г. их было всего лишь девять.

Наиболее интенсивно грозовая деятельность развивается с мая по сентябрь. Особенно часты грозы в июле, число дней с ними достигает шести. Редко, один раз в 20 лет, грозы возможны в декабре, но ни разу они не отмечались в январе и феврале.

Ежегодно грозы наблюдаются только в июле, а в 1937 г. число дней с ними в этом месяце составило 14 и было наибольшим за весь период наблюдений. В центральной части города и в августе грозы бывают ежегодно, но в районах, расположенных на побережье залива, вероятность возникновения гроз составляет в это время 98 %о (табл. 76) .

С апреля по сентябрь число дней с грозой в Ленинграде изменяется от 0,4 в апреле до 5,8 в июле, а средние квадратические отклонения при этом имеют значения 0,8 и 2,8 дней соответственно (табл. 75).

Общая продолжительность гроз в Ленинграде составляет в среднем 22 ч за год. Наиболее длительными обычно бывают летние грозы. Наибольшая суммарная за месяц продолжительность гроз, равная 8,4 ч, приходится на июль. Наиболее кратковременные являются весенние и осенние грозы.

Отдельная гроза в Ленинграде длится непрерывно в среднем около 1 ч (табл. 77). Летом увеличивается до 10... 13% повторяемость гроз длительностью более 2 ч (табл. 78), а самые длительные отдельные грозы - более 5 ч - отмечены в июне 1960 и 1973 гг. Летом в течение суток самые продолжительные грозы (от 2 до 5 ч) наблюдаются днем (табл. 79).

Климатические параметры гроз по данным статистических визуальных наблюдений в точке (на метеостанциях радиусом обзора примерно 20 км) дают несколько заниженные характеристики грозовой деятельности по сравнению со значительными по площади районами. Принято, что летом число дней с грозой в пункте наблюдения примерно в два-три раза меньше, чем на территории радиусом 100 км, и примерно в три-четыре раза меньше, чем на территории радиусом 200 км.

Наиболее полную информацию о грозах на площадях радиусом 200 км дают инструментальные наблюдения радиолокационных станций. Радиолокационные наблюдения позволяют заблаговременно за один-два часа до подхода грозы к станции выявить очаги грозовой деятельности, а также проследить за их перемещением и эволюцией. Причем надежность радиолокационной информации достаточно велика.

Например, 7 июня 1979 г. в 17 ч 50 мин радиолокатор МРЛ-2 Информационного центра погоды зафиксировал на расстоянии 135 км к северо-западу от Ленинграда грозовой очаг, связанный с тропосферным фронтом. Дальнейшие наблюдения показала, что этот грозовой очаг перемещается со скоростью около 80 км/ч в направлении к Ленинграду. В городе начало грозы было отпечено визуально через полтора часа. Наличие радиолокационных данных позволило заблаговременно предупредить об этом опасном явлении заинтересованные организации (авиацию, электросеть и др.).

Град выпадает в теплое время года из мощных облаков конвекции при большой неустойчивости атмосферы. Он представляет собой осадки в виде частичек плотного льда различных размеров. Наблюдается град только при грозах, обычно во время. ливней. В среднем из 10... 15 гроз одна сопровождается выпадением града.

Нередко град причиняет большой ущерб садово-парковому хозяйству и сельскому хозяйству пригородной зоны, повреждая посевы, плодовые и парковые деревья, огородные культуры.

В Ленинграде выпадение града - явление редкое, кратковременное и носит местный локальный характер. Размер градин в основном небольшой. Случаев с выпадением особо опасного града диаметром 20 мм и более по наблюдениям метеостанций в самом городе не отмечено.

Образование градовых облаков в Ленинграде, как и гроз, связано чаще с прохождением фронтов, в основном холодных,и реже с прогревом воздушной массы от подстилающей поверхности.

За год наблюдается в среднем 1,6 дня с градом, а в отдельные годы возможно увеличение до 6 дней (1957 г.). Наиболее часто в Ленинграде град выпадает в июне и сентябре (табл. 80). Наибольшее число дней с градом (четыре дня) отмечено в мае 1975 г. н июне 1957 г.


В суточном ходе выпадение града происходит преимущественно в послеполуденные часы с максимумом повторяемости от 12 до 14 ч.

Период выпадения града составляет в большинстве случаев от нескольких минут до четверти часа (табл. 81). Выпавшие градины обычно быстро тают. Лишь в отдельных редких случаям продолжительность выпадения града может достигать 20 мин и более, при этом в пригородах и окрестностях она больше, чем в самом городе: так, в Ленинграде 27 июня 1965 г. град выпадал в течение 24 мин, в Воейково 15 сентября 1963 г.- 36 мин с перерывами, а в Белогорке 18 сентября 1966 г.- 1 ч с перерывами.

Определение и запись общего количества облаков, а так же определение и запись количества облаков нижнего и среднего ярусов и их высот.

Определение и запись общего количества облаков

Количество облаков выражается в баллах по 10-бальной шкале от 0 до 10. На глаз оценивается сколько десятых частей неба покрыто облаками.

Если облаков нет или облачность покрывает менее 1/10 неба, облачность оценивается баллом 0. Если облаками покрыты 1/10, 2/10, 3/10 части неба и т.д., ставятся отметки соответственно 1, 2, 3 и т.д. Цифра 10 ставится только тогда, когда всё небо сплошь покрыто облаками. Если в небе наблюдаются хотя бы и очень небольшие просветы, записывается 10

Если количество облаков больше 5 баллов (т.е. облаками покрыто половины неба) удобнее оценить площадь не занятую облаками и полученную величину, выраженную в баллах вычесть из 10. Остаток покажет количество облаков в баллах.

Для того чтобы оценить, какая часть неба свободна от облаков, надо мысленно суммировать все те просветы ясного неба (окна), которые имеются между отдельными облаками или грядами облаков. Но те просветы, которые существуют внутри нескольких облаков (перистых, перисто-кучевых и почти всех видов высоко-кучевых), присущи им по внутренней структуре и по размерам очень малы, суммированию не подлежат. Если такие имеющие просветы облака покрывают всё небо, ставится Цифра 10

Определение и запись количества облаков нижнего и среднего ярусов и их высот.

Кроме общего кол-ва облаков N необходимо определять общее кол-во слоисто-кучевых, слоистых, кучевых, кучево-дождевых и разорвано-дождевых облаков Nh (форм, записываемых в строку “СL“) или, если нет их, то общее кол-во высоко-кучевых, высоко-слоистых и слоисто-дождевых облаков (форм, записываемых в строку “СМ “). Количество этих облаков Nh определяется по тем же правилам, что и общего количества облаков.

Высоту облаков необходимо оценить на глаз, стремясь к точности 50-200 м. Если же это затруднительно, то хотя бы с точностью 0,5 км. Если эти облака расположены на одном уровне, то в строку “h” записывают высоту их основания, если же они расположены на разных уровнях, указывается высота h самых низких облаков. Если отсутствуют облака формы, записываемой в строку “СL“, а наблюдаются облака формы, записываемой в “См”, в строку h записывают высоту основания этих облаков. Если отдельные обрывки или клочки облаков, записываемых в строку “СL“ (в количестве менее 1 балла), расположены под более обширным слоем других облаков этих же форм или форм, записываемых в строку “См “ , в строку “h” записывают высоту основания этого слоя облаков, а не клочков или обрывков.

По международной классификации различают 10 главных видов облаков разных ярусов.

> ОБЛАКА ВЕРХНЕГО ЯРУСА (h>6км)
Перистые облака (Cirrus, Ci) - это отдельные облака волокнистой структуры и белесоватого оттенка. Иногда они имеют очень правильное строение в виде параллельных нитей или полос, иногда же наоборот, нх волокна спутаны и разбросаны по небу отдельными пятнами. Перистые облака прозрачны, так как состоят из мельчайших ледяных кристалликов. Часто появление таких облаков предвещает изменение погоды. Со спутников перистые облака порой трудноразличимы.

Перисто-кучевые облака (Cirrocumulus, Cc) - слой облаков, тонких и просвечивающихся, как перистые, но состоящих из отдельных хлопьев или мелких шариков, а иногда как бы из параллельных волн. Эти облака обычно образуют, образно говоря, «кучевое» небо. Часто они появляются вместе с перистыми облаками. Бывают видны перед штормами.

Перисто-слоистые облака (Cirrostratus, Cs) - тонкий, просвечипающийсн беловатый или молочного оттенка покров, сквозь который отчетливо виден диск Солнца или Луны. Покров этот может быть однородным, как слой тумана, либо волокнистым. На перисто-слоистых облаках наблюдается характерное оптическое явление - гало (светлые круги вокруг Луны или Солнца, ложное Солнце и др.). Как и перистые, перистослоистые облака часто указывают на приближение ненастной погоды.

> ОБЛАКА СРЕДНЕГО ЯРУСА (h=2-6 км)
Они отличаются от сходных облачных форм нижнего яруса большой высотой, меньшей плотностью и большей вероятностью наличия ледяной фазы.
Высококучевые облака (Altocumulus, Ac) - слой белых или серых облаков, состоящих из гряд или отдельных «глыб», между которыми обычно просвечивается небо. Гряды и «глыбы», образующие «перистое» небо, сравнительно тонкие и располагаются правильными рядами или в шахматном порядке, реже - в безпорядке. «Перистое» небо обычно является признаком довольно плохой погоды.

Высокослоистые облака (Altostratus, As) - тонкая, реже плотная вуаль сероватого или синеватого оттенка, местами неоднородная или даже волокнистая в виде белых или серых клочьев по всему небу. Солнце или Луна просвечиваются сквозь нее в виде светлых пятен, порой довольно слабых. Эти облака верный признак небольшого дождя.

> ОБЛАКА НИЖНЕГО ЯРУСА (h По мнению многих ученых, слоисто-дождевые облака отнесены к нижнему ярусу нелогично, так как в этом ярусе находится только их основания, а вершны достигают высоты нескольких километров (уровни облаков среднего яруса). Эти высоты более характерны для облаков вертикального развития, и потому некоторые ученые относят их к облакам среднего яруса.

Слоисто-кучевые облака (Stratocumulus, Sc) - облачный слой, состоящий из гряд, валов или отдельных их элементов, крупных и плотных, серого цвета. Почти всегда имеются более темные участки.
Слово "кучевые" (от латинского "куча", "груда") обозначает скупченность, нагроможденность облаков. Эти облака редко приносят дождь, лишь иногда они превращаются в слоисто-дождевые, из которых выпадает дождь или снег.

Слоистые облака (Stratus, St) - довольно однородный, лишенный правильной структуры слой низких облаков серого цвета, очень похожий на туман, поднявшийся нал землей на сотню метров. Слоистые облака закрывают большие пространства, имеют вид рваных лоскутов. Зимой эти облака часто удерживаются весь день, осадки на землю из них обычно не выпадают, иногда бывает морось. Летом они быстро рассеиваются, после чего наступает хорошая погода.

Слоисто-дождевые облака (Nimbostratus, Ns, Frnb) - это темно-серые тучи, порой угрожающего вида. Часто ниже их слоя появляются низкие темные обрывки разорванно-дождевых облаков - типичные предвестники дождя или снегопада.

> ОБЛАКА ВЕРТИКАЛЬНОГО РАЗВИТИЯ

Кучевые облака (Cumulus, Cu) - плотные, резко очерченные, с плоским, сравнительно темным основанием и куполообразной белой, как бы клубящейся, вершиной, напоминающей цветную капусту. Они зарождаются в виде небольших белых обрывков, но вскоре у них формируется горизонтальное основание, и облако начинает незаметно подниматься. При небольшой влажности и слабом вертикальном восхождении воздушных масс кучевые облака предвещают ясную погоду. В противном случае они накапливаются и течение дня и могут вызвать грозу.

Кучево-дождевые (Cumulonimbus, Cb) - мощные облачные массы с сильным развитием по вертикали (до высоты 14 километров), дающие обильные ливневые осадки с грозовыми явлениями. Развиваются из кучевых облаков, отличаясь от них верхней частью, состоящей из ледяных кристаллов. С этими облаками связан шквалистый ветер, сильные осадки, грозы, град. Период жизни этих облаков короткий - до четырёх часов. Основание облаков имеет тёмный цвет, а белая вершина уходит далеко наверх. В тёплое время года вершина может достигать тропопаузы, а в холодный сезон, когда конвекция подавлена, облака более плоские. Обычно облака не образуют сплошного покрова. При прохождении холодного фронта кучево-дождевые облака могут формировать вал. Солнце сквозь кучево-дождевые облака не просвечивает. Кучево-дождевые облака образуются при неустойчивости воздушной массы, когда происходит активное восходящее движение воздуха. Эти облака также часто образуются на холодном фронте, когда холодный воздух попадает на тёплую поверхность.

Каждый род облаков, в свою очередь, подразделяется на виды по особенностям формы и внутренней структуры, например, fibratus (волокнистые), uncinus (когтевидные), spissatus (плотные), castellanus (башенкообразные), floccus (хлопьевидные), stratiformis (слоистооб-разные), nebulosus (туманнообразные), lenticularis (чечевицеобразные), fractus (разорван-ные), humulus (плоские), mediocris (средние), congestus (мощные), calvus (лысые), capillatus (волосатые). Виды облаков, далее, имеют разновидности, например, vertebratus (хребтовидные), undulatus (волнистые), translucidus (просвечивающие), opacus (непросвечивающие) и др. Далее различаются дополнительные особенности облаков, такие, как incus (наковальня), mamma (вымеобразные), vigra (полосы падения), tuba (хобот) и др. И, наконец, отмечаются эволюционные особенности, указывающие на происхождение облаков, например, Cirrocumulogenitus, Altostratogenitus и т.д.

Наблюдая за облачностью, важно на глаз определить по десятибалышй шкале степень покрытия неба. Чистое небо - 0 баллов. Ясно, на небе нет облаков. Если покрыто облаками не более грети небесного свода 3 балла, малооблачно. Облачно с прояснением 4 балла. Это значит, что облака покрывают половину небесного свода, но временами их количество уменьшается до «ясно». Когда небо закрыто наполовину, облачность 5 баллов. Если говорят «небо с просветами», имеют в виду, что облачность не менее 5, но и не более 9 баллов. Пасмурно - небо полностью покрыто облаками единого голубого просвета. Облачность 10 баллов.

В конце мая в Норильске очень часто наблюдается низкая облачность. Вернее, обычно она там целый месяц стоит, и лишь изредка наблюдается ее повышение.
Попробуй-ка принять решение на вылет при таком вот прогнозе, что никаких гарантий не дает, «фифти-фифти»... а, приняв решение, попробуй еще зайти и сесть.

Вот в такой момент повышения облачного покрова удалось нам прорваться в Норильск из Краснодара-Уфы. Давали нижний край 80 метров; зашел я и сел в автоматическом режиме, то есть, только последние 15 секунд перед касанием крутил руками после отключения автопилота. Спина сухая. Увидел в облачных разрывах землю где-то на высоте метров 70, полоса прямо перед носом. После пробега я сообщил диспетчеру старта, как положено, высоту нижнего края: «80 метров». Это на всякий случай: вдруг у заходившего следом за мной борта минимум капитана 80х1000, так чтоб его диспетчер не угнал на запасной, дал сесть тоже.
Сцепление давали 0,3 – предельно допустимое, но ветерок дул строго по полосе; я попытался по бабаевской методике протянуть машину вдоль «пупка», подведя чуть пониже и огибая перегиб полосы, но не унюхал, чуть перелетел его, и машина ощутимо коснулась, с перегрузкой 1,2. Нет, не всегда, далеко не всегда удаются мне бабаевские посадки.
Торможение на пробеге было вполне нормальное, и я успокоил встревоженного руководителя полетов, зашедшего в АДП узнать от экипажа о состоянии полосы. У него тележка, замеряющая сцепление, дала в двух местах меньше допустимого: 0,28, и парень интересовался, соврала или нет, – ему ж за этот коэффициент отвечать, случись, не дай бог, если кто-то выкатится с полосы.
Ну, соврала, соврала, успокойся. Не закрываться же по этой, случайно проскочившей цифре. Тут надо успеть побольше бортов принять, пока нижний край облачности приемлемый. Да еще пока какой-нибудь сильно честный летчик не ляпнет в эфир, что, мол, низкая облачность стала уж очень низкая. Тогда придется закрыться. Вернее – дать в метеоинформацию данные о нижнем крае, что он хуже минимума аэродрома; и пусть капитаны решают сами.
Север есть Север. В Заполярье молодых допускают летать лишь тогда, когда капитан уже наберется опыта принятия стандартных решений и укрепит нервы для принятия решений нестандартных.
Через час облачность понизилась до 30 метров. Кто знает Алыкель, тот не удивится. Место высокое, и обычная для Севера в это время низкая (80-100м) облачность, с лохматым нижним краем, часто касается земли на этом пупке. Поэтому, если в циркуляре услышишь «слоистая 120 метров», то следует заведомо ожидать в течение получаса колебания: от «пять баллов разорванно-слоистая 80» до «туман 200, вертикальная видимость 30» – то есть, до земли. А через двадцать минут опять: «10 баллов слоистая 80», потом «7 баллов 120»; а там снова, через каждые пять минут: «разорванно-слоистая 80»; «дымка 1100»; «туман 700»; «туман 200, вертикальная 30»... Клубящаяся, разлохмаченная нижняя кромка протаскиваетсятся над взлетно-посадочной полосой, цепляя ее по два-три раза за час, и тут же уносится, а через полчаса снова понижается, и снова свистопляска цифр в эфире. Норильск верен своей нелестной репутации.
И мы, летающие на Север по несколько раз в месяц, десятилетиями, постоянно и чаще чем куда-либо, – не дергаемся, не нервничаем, а ждем судьбы; правда, постаравшись перед рейсом всякими правдами и неправдами заначить в баках тонны полторы керосину – на полет в зоне ожидания.

Подписали задание на Красноярск и сидели в самолете, ожидая загрузку. Нам хорошо было видно, как перед торцом полосы, на высоте 30-40 метров, вываливается из хмурой ваты серых облаков то пузатый Ил-86, то юркий «туполенок», то наш красавец Ту-154. Аэропорт спокойно работал. Как ты докажешь, на какой высоте капитан установил визуальный контакт с земными ориентирами. После пробега он докладывает нижний край: положенные «70 метров». Ну, сел же, значит, и правда, видел землю.
На глазах появилась дымочка; узкая полоска света между кромкой облаков и горизонтом размылась, потускнела, посерела – и вот уже видно только вблизи, как будто запотели стекла, и вот уже туманчик... туман идет стеной!
Через пять минут туман стеной уже унесло, узкая полоска света прояснялась на глазах, и над торцом нижний край приподнялся метров до тридцати. По радиостанции слышно было, что на кругу два борта, заходят один за другим. Диспетчер давал борту, висящему на глиссаде, удаление: 2000, 1000, 500 – никого не видно... а ведь у него на удалении 500 высота должна быть 30...
Вдруг над торцом образовалось какое-то уплотнение, тень, мелькнули вроде колеса – и вновь скрылись в туманной кромке: борт ушел на второй круг. Не выдержали нервы. По радио слышно было номер борта: 85600 с хвостиком – «эмка»; а «эмки» только у москвичей...
За ним заходил другой борт; снова: удаление 2000, 1000, 500... тишина, секунды, – и вывалился прямо над торцом, чуть с перелетом, по продолженной глиссаде, сел, молодец. Доложил посадку и дал нижний край... 60 метров! Это в Норильске-то, где минимум 70х900! Талона не жалко, что ли... эх, ошибся в запарке. Ну, тут уж, когда прибежит капитан на вышку, диспетчера решат, что с ним делать.
Ага, опомнился, дал поправку: «Конечно же, семьдесят! Семьдесят нижний край!» Все облегченно вздохнули: ясное дело – напряжение, сложная посадка, тут любой ошибется... в конце-то пробега уже. А раз сел – победителей не судят. Ну, а москвича тут же угнали на запасной. «Не умешь кой-где ушам шевелить – не фиг лезти» – как говорят у нас в Сибири.
Норильские диспетчера хорошо разбираются, кто «умет ушам шевелить», а кто нет. Красноярским капитанам доверяют, их пофамильно знают. Да и москвичей тоже, кто туда давно летает.

Казалось, с чего бы это восхищаться «нарушениями» минимума мне, профессионалу, который как никто другой должен... и пр.
Да глупости все это. Экипажи в полной мере реализуют свое мастерство, свои резервы, проскальзывая в захлопывающееся окно строгого северного аэродрома. Здесь такая работа – норма. И то еще: ветер по полосе в Алыкеле – редкость; да и видимость под облаками нынче более десяти километров – роскошь... И чего б тут дергаться: сиди, сильно не крути штурвал, держи стрелки в центре и жди; полоса все равно откроется. Система работает отлично, диспетчер квалифицированно следит по посадочному локатору, изредка подсказывает, и ему еще от входа в глиссаду видно, кто как ее держит, кто как «ушам шевелит». Директорные стрелки выведут тебя точно на полосу... только надо уметь их держать в центре. Ну, сядешь для гарантии чуть с перелетом, так полоса-то 3700... более чем достаточно, со встречным ветром-то.
Все дело в нервах. Тот самый удар в лицо, когда торец распахнется прямо перед глазами... некоторые ждут его с волнением у грудях, не дожидаются, а страх нарушить тот условный минимум, ту цифру, которую выдумали и установили для среднего летчика в уютном кабинете на Ленинградском проспекте – этот страх накладывается на страх удара в лицо... И человек, дрогнув, не выдерживает тяжести бесконечных секунд, когда земли вроде и не видно, и вроде уже что-то там шевелится под носом машины... а-а! – взлетный! уходим! Переламывает траекторию и уходит... успев в последний момент увидеть прямо под носом огни торца и кляня себя за слабое очко... Но – все, брат, здесь тебе не там.
А ведь зашел-то как по ниточке!
Ничего, Север тебя проверит на прочность, а если бог укрепит твой дух – то в Заполярье и мастерство отполируешь. Или уходи. Казни себя, если способен.
По мне, так труднее заходить при плохой видимости, когда в поле зрения сначала вплывает лишь пятно размытых огней, а за ним, кроме зеленых огней торца в клубящемся черном колодце полосы, больше ничего и не видно, – вот где трудность: определить, параллельно ли осевой линии ты идешь, когда той линии не видать. Ты должен верить, что шел строго параллельно ей, по крайней мере, с момента, когда это пятно огней увидел краем зрения. В этом – твое мастерство, а в сознании мастерства куется твое мужество северного летчика.
И вот, зацепившись глазом за торец, но все равно продолжая пилотировать по стрелкам, которым должен безусловно верить, я говорю экипажу:
– Садимся, ребята!
Мы сядем, и красиво сядем, в этой круговерти. Потому что у нас далеко позади – и тот страх, и та внутренняя борьба, и та тренировка себя на полярного ездового пса, что реализуется сейчас незаметными со стороны миллиметровыми движениями штурвала. Все это – далеко в прошлом. Сейчас я способен осмыслить явление, которое молодому кажется бесконечными секундами страдания... и – взлетный режим! Что ж, брат, каждый из нас, Капитанов, должен сам пройти этот путь по тропе мужества, долгий и нелегкий.

Пассажиру, едва успевшему заметить, что в туманном окне на секунду посветлело и... катимся? – вот ему-то, ревнителю законов, невозможно понять, что нарушения... нет. Просто он смотрел в сторону, а я – вперед. И по множеству признаков, которые недоступны пониманию нетренированного человека, профессионал принял и реализовал решение. Неплохо получилось, не правда ли?
А пенсию в старости мне назначат, в общем-то, такую же, как и пассажиру.

Мне довелось быть свидетелем последствий ошибки экипажа, не сумевшего выполнить посадку в подобных условиях и своими руками загнавшего себя в угол, где за непрофессионализм его наказала сама Смерть.
Мы шли двумя бортами друг за другом в открывшийся после циклона Норильск. И после Туруханска нам неожиданно дали команду на посадку в Игарке: Норильск закрылся, там вроде бы выкатился на посадке Ан-12.
Пришлось садиться в Игарке. Сразу за нами на перрон зарулил только что вырвавшийся из Алыкеля Як-40, и капитан в АДП рассказал, что при заходе на посадку пропал Ан-12, ищут, упал где-то в районе аэродрома.
Часа через два нам разрешили перелететь в Алыкель, предупредив, что где-то там, в районе полосы, под низкой облачностью, лежит большой самолет, повнимательнее.
Что переживает экипаж, заходящий на посадку над еще теплыми телами своих небесных братьев, я описывать не буду. Погода была на пределе, но нам удалось проскользнуть сквозь открывшееся окно. На посадке все были собраны, ожидая всяких сюрпризов от посадочной системы, радиолучи которой, возможно, отражаются от упавшего вблизи самолета; но, вывалившись из облаков над торцом открывшейся во всю длину бетонки, мы его не увидели.
К этому времени разбитую машину уже нашли; все тела с найденного самолета были собраны, навалом погружены в грузовик спасателей, и он стоял в дальнем углу перрона. Кто-то из моих ребят сходил туда со знакомым работником службы безопасности, посмотрел. Я такого уже насмотрелся раньше и не пошел с ними: берег нервы.

Второй пилот из этого экипажа остался в живых. По его бессвязному рассказу и по косвенным признакам, в основном, и была потом восстановлена картина катастрофы. «Черные ящики» оказались неисправными, записей параметров полета и переговоров экипажа не сохранилось.
Они заходили на родной аэродром при сложных, но привычных метеорологических условиях. Северных ребят низкой облачностью не испугать... Уж как они выдерживали параметры полета, где у них были те стрелки, этого никто не узнает. Но траектория захода тяжелого четырехмоторного грузового самолета получилась таким зигзагом, что, вывалившись из низких облаков, они увидели полосу в стороне.
В такой ситуации надо уходить на второй круг, потому что положение самолета – непосадочное. Но тот, кто пилотировал самолет, принял решение сесть во что бы то ни стало и стал энергично доворачивать на полосу. Может быть, в этот момент низкая облачность снова закрыла торец, а может, подошел предел безопасной изворотливости машины, – во всяком случае, стало ясно, что никак не попасть на полосу, а если попасть – то по диагонали, и неизбежно выкатывание.
Скорость тем временем падала; экипаж, все внимание которого было сконцентрировано на визуальном маневре доворота на полосу, потерял контроль над стрелками, и самолет вышел на режим сваливания. В процессе разворота до капитана дошло, что сейчас упадут, и был дан взлетный режим... Поздно: самолет свалился на левое крыло на малой высоте, по диагонали, на полосу, с таким креном, что чиркнул законцовкой крыла по бетону. Но двигатели набрали мощность, машина, ударившись колесами о бетон, отскочила, и в четыре руки было реализовано желание пилотов уйти в небо. Этот взлет был, уж точно, последним. Самолет на остатках скорости задрал нос, ушел в облака, потерял скорость еще раз, свалился, теперь уже на правое крыло, и упал в ложбину в полукилометре справа от полосы. Он и сейчас там лежит – как памятник человеческому непрофессионализму и самоуверенности братьев моих небесных...
Я и тогда, и теперь не могу понять: как можно так безрассудно и самоуверенно, так небрежно и бесконтрольно пилотировать в условиях минимума погоды?
Спросить бы у оставшегося в живых второго пилота... да он калека. Смерть его пощадила, судьба изувечила. Только ли судьба?
Да и... язык не повернется спросить. Есть вещи, о которых летчик летчика никогда не спросит.

В последнее время в СМИ очень уж муссируется тема полетов в условиях грозовой деятельности, и обсасываются связанные с нею катастрофы. А ведь мы грозы обходим всего три, ну, четыре месяца в году, а летаем в условиях Севера как минимум, восемь месяцев. Да, страшнее грозы ничего нет. Но чуть, может, «на вот столько», менее опасно чем в грозу – летать в условиях обледенения, заходить на посадку при низкой облачности, в сильный боковой ветер, при низком коэффициенте сцепления, в тумане, в горах.
Такова летная работа. И если кое-кто ничтоже сумняшеся предлагает при появлении по курсу грозы – немедленно возвращаться, то давайте уж вернемся, если в нашем полете будут присутствовать и другие опасные метеорологические явления.

А лучше – забетонировать самолеты на стоянках намертво.