Влияние механической обработки на свойства почвы. Физико-механические свойства почвы и их влияние на качество обработки

Физико-механические свойства почвы - один из важнейших факторов, определяющих качество ее обработки и условия роста и развития культурных растений, уровень их урожайности. Наи­большее значение при этом имеют структура, плотность, твер­дость и липкость почвы. Эти свойства в сочетании с влажностью определяют готовность почвы к обработке, ее качество и условия жизни растений.

Агрономически ценная комковато-зернистая структура, при­давая почве рыхлое сложение, облегчает прорастание и распро­странение корней растений, а также уменьшает энергетические затраты на механическую обработку почвы. Бесструктурные по­чвы по сравнению со структурными, обладая большей связнос­тью, оказывают и более сильное удельное сопротивление при обработке.

Плотность и структурность пахотного слоя в значительной сте­пени зависят от гранулометрического состава почвы и ее генезиса. В процессе механической обработки почвы эти характеристики изменяются. Их трансформация направлена на оптимизацию ус­ловий аэрации корнеобитаемого слоя почвы.

Наиболее благоприятные условия воздухообмена для роста и развития сельскохозяйственных культур, возделываемых на под­золистых почвах, достигаются при механической обработке поч­вы, когда общая пористость составляет 45-55 %, некапилляр­ная 20-25, а капиллярная 25-30 % объема почвы. Оптимиза­ция воздухообмена в корнеобитаемом слое черноземов предпо­лагает повышение общей пористости до 60-65 %, а пористости аэрации до 25 %.

Понижение значений пористости аэрации до 12-15 % объе­ма почвы приводит к снижению урожайности возделываемых культур.

Стабилизация оптимальных значений воздухообмена обраба­тываемого слоя почвы во многом определяется структурностью почвы и и водоустойчивостью ее агрегатов.

Оптимальное содержание водопрочных агрегатов (0,25-10 мм) для оподзоленных почв составляет 30-45 %, черноземов 45-60 %. При этом в пахотном слое доля агрегатов диаметром 0,25-30 мм должна достигать 80 %, а глыбистость поверхностного слоя не превышать 20 %. Данный качественный состав почвенных агрега­тов позволяет пахотному горизонту длительное время поддержи­вать задаваемые параметры.

Утрата обрабатываемой почвой агрономически ценной струк­туры способствует ухудшению ее водно-воздушных свойств.

Пересыхание верхнего слоя приводит к повышению твердости почвы, которая оказывает значительное влияние на обработку по­чвы, рост корневой системы растений. Достижение критических значений твердости (при уплотнении почвы тяжелой сельскохо­зяйственной техникой) - 10 кг/см 2 обусловливает приостановку роста корневой системы растений. Это особенно важно для фор­мирования корнеплодов у сахарной свеклы, моркови, клубней у картофеля.


Повышение влажности почвы до определенного предела, когда сила сцепления между частицами почвы становится меньше, чем между почвой и рабочей поверхностью орудия, приводит к появ­лению липкости почвы. При этом происходит пластичное дефор­мирование почвы. Это приводит к нарушению пористости, зама­зыванию, образованию корки, глыб и плужной подошвы. Состоя­ние почвы при этом практически необратимо, т.е. не может быть устранено или изменено в короткий срок агротехническими при­емами.

Проблема улучшения физико-механических свойств почвы - одна из главных в земледелии, так как от этого зависят увеличе­ние урожайности сельскохозяйственных культур и повышение производства продукции растениеводства.

Множество приемов регулирования физико-механических свойств и восстановления почвенной структуры можно объеди­нить в три большие группы: механические, химические, биологи­ческие.

Приемы первой группы включают интенсивную механичес­кую обработку почвы, почвоуглубление, щелевание и т.д. Эти приемы позволяют существенно улучшить физико-механические свойства почвы. Однако действие их кратковременное, и поэто­му для достижения продолжительного эффекта необходимо сис­тематическое многократное применение их. Следует отметить, что систематические интенсивные механические обработки способ­ствуют увеличению доли микроструктуры (илистых фракций) в структуре почвы и снижают водопрочность. Следовательно, меха­нические приемы регулирования физико-механических свойств, улучшая почвенные условия роста и развития растений в момент их применения, обусловливают значительное ухудшение их в перспективе.

Приемы второй группы - химические, включают использование для улучшения структуры и физико-механических свойств почвы различных химических веществ, называемых структуроулучшателями. Применение их повышает коэффициент структурности почв. Использование этих веществ перспективно, но ограничено эконо­мической целесообразностью. К приемам этой группы можно от­нести известкование кислых почв и гипсование солонцов. В ре­зультате известкования почва становится структурной, увеличи­вается ее водопроницаемость и уменьшается плотность. Извест-106 кованные почвы имеют более благоприятные физико-механичес­кие свойства.

Гипсованием устраняют щелочную реакцию солонцовых почв, улучшают их физические свойства и структурное состояние. Твердость и сопротивление при обработке, липкость и другие физико-механические свойства в результате замещения погло­щенного натрия кальцием становятся более благоприятными в агрономическом отношении. Однако применением известко­вания и гипсования нельзя полностью решить проблему улуч­шения физико-механических свойств и структуры почвы, так как решение ее выходит далеко за пределы кислых и щелоч­ных почв.

Приемы третьей группы - биологические, они направлены на
повышение содержания органического вещества (гумуса) в поч­
ве. Эти приемы универсальны и долговечны. С увеличением со­
держания гумуса в почве улучшаются не только ее физико-ме­
ханические и химические свойства, но и все почвенные режи­мы: пищевой, водный, воздушный. Результаты наших исследова­ний свидетельствуют о том, что с повышением содержания гумуса в почве уменьшается ее плотность и повышается устойчивость к различным деформациям. При содержании гумуса в почве 3,7 % и более равновесная плотность почвы устанавливается на опти­мальной для культурных растений величине. Такие почвы да­же после принудительного уплотнения способны под действием естественных факторов (увлажнение, замораживание, высушива­ние) к разуплотнению и не требуют рыхления с целью регули­рования физических свойств. Почвы с содержанием гумуса ме­нее 3,7 % после принудительного уплотнения не восстанавлива­ют исходной плотности. На таких почвах необходима механи­ческая обработка как средство регулирования физико-механи­ческих свойств.

К биологическим приемам регулирования физико-механи­ческих свойств почвы относят: совершенствование севооборо­тов, включающее увеличение доли многолетних трав в струк­туре посевных площадей; применение сидеральных культур; увеличение объема вносимых органических удобрений; опти­мизацию обработки почвы, направленную на уменьшение ин­тенсивности и глубины рыхлений с целью снижения темпов минерализации органического вещества почвы и распыления структуры.

Контрольные вопросы и задания

1. Перечислите физико-механические свойства почвы. 2. Дайте характерис­тику агрономическиценной структуры. 3. Что такое спелость почвы? 4. Как обра­зуется плужная подошва? Каковы ее вред и пути преодоления? 5. Назовите при­емы регулирования физико-механических свойств почвы.

Лекция № 7

Тема: Географическое распространение и классификация почв

7.1. Закономерности территориального распределения почв

7.2. Систематика и номенклатура почв

7.3. Классификация почв

7.4. Классификация антропогенно-преобразованных почв

На начальном этапе освоения целины механическая обработка играет исключительно важную и по существу мелиоративную роль в почвообразовании.
При вспашке с оборотом пласта резко различные по свойствам генетические горизонты и подгоризонты срезаются на глубину вспашки и перемешиваются, в результате чего создается качественно новый горизонт - пахотный слой. Свойства его резко отличаются от свойств тех горизонтов, какие вошли при вспашке в его состав. Содержание гумуса и прочной структуры в новом пахотном слое почвы снижается до уровня средней величины в результате перемешивания с нижними менее гумусными и менее структурными горизонтами. Усредняется и плотность почвы. Обычно вновь созданный пахотный слой имеет более рыхлое сложение, чем основная масса подгоризонтов, захваченных плугом. Увеличивается численность почвенной микрофлоры и уменьшается почвенная фауна и ее роль в образовании прочной структуры и сложении почвы. Групповой состав почвенных микроорганизмов изменяется. Вследствие улучшенной аэрации в почве усиливаются процессы нитрификации, а процессы денитрификации при этом резко снижаются. Например, по данным А.С. Шаровой, численность денитрификаторов в результате распашки целины елового леса снизилась с 600 тыс. на 1 г почвы до нуля.
В процессе возделывания сельскохозяйственных культур система механической обработки почв регулирует плотность пахотного слоя - одного из главных факторов почвенного плодородия, так как с изменением плотности почвы меняются водный, воздушный и тепловой режимы и, как следствие, биологическая активность и питательный режим почвы (табл. 120).


Почва, оставленная без обработки даже в течение одного вегетационного периода, неизбежно уплотняется, при этом резко снижается ее свободная пористость и водопроницаемость. Увеличивается количество очень мелких пор и в связи с этим возрастает количество недоступной растениям влаги, ухудшается газовый режим почвы и резко снижается урожай растений. Так, повышение плотности почв от 1,0 до 1,6 г/см3 снижало скорость фильтрации воды в суглинистых и тяжелосуглинистых почвах в 1000 и 5000 раз, причем наибольшее падение фильтрации наблюдалось уже при первом уплотнении почвы от 1,0 до 1,2 г/см3. При увеличении плотности от 1,0 до 1,4 г/см3 влажность устойчивого завядания растений дерново-слабоподзолистой почвы увеличилась с 8,2 до 12,7 об.%, а южного чернозема - с 16,4 до 25,8%. В вегетационных опытах уплотнение почвы с 1,1 до 1,5 г/см3 вызывало снижение урожая овса на дерново-подзолистой почве с 12,7 до 7,5 г, на каштановой почве - с 10,5 до 7,5 г и на мощном черноземе - с 14,0 до 3,7 г зерна на сосуд (табл. 121).
Экспериментально установлена оптимальная плотность, при которой в пахотном слое создается благоприятное для получения наиболее высоких урожаев соотношение свободной и капиллярной порозности и благоприятный водно-воздушный и термический режимы. Для разных почв величина оптимальной плотности пахотного слоя почвы различна и колеблется в пределах от 1,0 до 1,25 г/см3. Система обработки почв направлена на создание оптимальной плотности сложения пахотного слоя для каждой культуры севооборота.
Исключительно важную роль играет обработка в регулировании водно-воздушного режима подзолистых и гидроморфных почв, которые испытывают длительное сезонное переувлажнение.
Регулируя водно-воздушный режим, механическая обработка повышает биологическую активность почвы, а вместе с этим улучшает ее пищевой режим. По Е.Н. Мишустину, обработка может увеличить численность почвенных микроорганизмов в 3 раза. Под влиянием обработки в почве увеличивается численность различных групп микроорганизмов и вместе с этим количество подвижных, доступных растениям соединений азота, фосфора и калия. Так, на делянках без растений в дерново-подзолистой почве, которая постоянно обрабатывалась по типу пропашных культур, численность бактерий на МПА, крахмало-аммиачной среде, среде Аристовской и Эшби была в 1,5-2 раза больше, чем на делянках с уплотненным пахотным слоем, который со времени посева озимых не обрабатывался. Соответственно в ней было выше и содержание элементов питания - гидролизуемого азота и подвижных соединений фосфора и калия.
Обработка почвы оказывает большое влияние на содержание гумуса в почве. С одной стороны, она усиливает аэробные процессы минерализации органического вещества в почве и тем самым играет важную роль в обеспечении растений элементами питания, в первую очередь азотом. С другой стороны, обработка, улучшая условия аэрации, способствует развитию микроорганизмов, участвующих в образовании гумуса, и усилению окислительных процессов. Напомним, что, по Тюрину, новообразование высокомолекулярных гумусовых веществ происходит в результате реакций окисления. Соотношение этих двух противоположных процессов - процессов минерализации и образования гумуса под влиянием обработки почвы - зависит от поступления в почву органического материала в виде растительных остатков, корневых выделений, органических удобрений. При наличии их в рыхлой обрабатываемой почве создаются условия для преобладания процессов образования гумуса над его минерализацией. Как видно из данных табл. 122, при внесении одинакового количества навоза в рыхлой почве под пропашной культурой гумуса образовалось значительное больше, чем в уплотненной почве под озимой рожью.

В лабораторных опытах при компостировании корней клевера в подзолистой и черноземной почвах в аэробных условиях (в токе газовой смеси - 20% O2 и 80% N) гумуса образовывалось также больше, чем в условиях анаэробных (0,5% O2 и 95,5% N).
Обработка почв частично разрушает структуру, но в то же время в еще большей степени образует структурные агрегаты в результате крошения глыб орудиями и за счет агрегации пылеватых частиц физически «спелой» почвы при сдавливании. Сближенные пылеватые и глинистые частицы скрепляются в агрегаты под действием сил Ван-дер-Ваальса, за счет добавочных валентностей, пленок ориентированной воды, полимеризации дипольных органических соединений и др.
Для каждой почвы существует своя оптимальная влажность структурообразования, соответствующая понятию «спелой» почвы, при которой перемешивание и механическое воздействие орудий обработки приводят к образованию структурных агрегатов. Опытами установлено, что обработка почвы при оптимальной влажности улучшает структурное состояние почвы и повышает урожай растений. На старопахотных распыленных почвах механическая обработка при оптимальной влажности осенью и весной, предпосевная обработка (рыхление и боронование) после выпадения осадков являются основным фактором улучшения структуры и водно-воздушного режима пахотного слоя на весь период вегетации. Механическая обработка сухой почвы, что бывает при лущении стерни, при подготовке почвы под посев озимых, наоборот, сильно разрушает структуру почвы.
Механическая обработка оказывает и косвенное влияние на структуру почвы. С одной стороны, она снижает прочность структуры, поскольку способствует минерализации гумусовых веществ, скрепляющих агрегаты. С другой стороны, в результате рыхления в почве лучше развивается корневая система растений, интенсивней образуются перегнойные вещества, мицелий и слизистые продукты жизнедеятельности микроорганизмов, повышающие прочность структуры. В конечном счете благодаря правильной обработке в почве образуется структурных агрегатов больше, чем разрушается. Однако структура, возникшая в результате обработки, обладает малой водопрочностью, большая часть ее разрушается в период осенне-весеннего переувлаженения почвы и только немногие из агрегатов, образованных обработкой, под влиянием гумусовых веществ эволюционируют в стабильно прочную структуру.
Под влиянием обработки изменяются, и агрохимические свойства почвы. Усиливаются процессы выветривания первичных минералов и процессы перевода минеральной части почвы в активные формы соединений, увеличивается содержание обменных оснований. В почвах с кислой реакцией при этом снижаются кислотность, содержание подвижного алюминия, увеличивается степень насыщенности почвы основаниями.
В результате уничтожения естественной растительности и механической обработки почв на площадях, вводимых в культуру, создаются условия для усиления водной и ветровой эрозии почв. Резко усиливается смыв и выдувание наиболее плодородного богатого гумусом верхнего слоя почвы, растут рытвины, промоины и овраги; как следствие этого снижается плодородие почв, гибнут посевы и увеличиваются площади бросовых земель. Поэтому защита пахотных почв от эрозии является одной из важнейших задач земледелия. Для предотвращения эрозии почв необходимы правильная организация территории с учетом рельефа и осуществление комплекса мер, направленных на устранение поверхностного стока и сохранение почв: специальные гидротехнические сооружения, террасирование склонов, постройка лотков-водотоков, водозадерживающих валов и водопоглощающих канав, лесные почвозащитные насаждения, противоэрозионная агротехника - глубокая безотвальная вспашка, прерывистое бороздование, вспашка и рядовой сев поперек склонов, противоэрозионные севообороты, внесение органических удобрений и др.

Все технологические операции осуществляются путем проведе-ния соответствующих приемов механической обработки почвы . Прием - это однократное воздействие на почву рабочими орга-нами машин или орудий. Приемы механической обработки почвы делятся на две группы: основной и поверхностной обработки.

Под приемами основной обработки понимается механическое воздействие на почву рабочими органами почвообрабатывающих машин и орудий на всю глубину пахотного слоя или глубже при его углублении, но не менее чем на 18-20 см, чтобы придать поч-ве мелкокомковатое состояние с благоприятным строением.

Приемы основной обработки почвы являются наиболее энерго-емкими , но одновременно с их помощью решаются многие задачи. Посредством приемов основной обработки при углублении пахот-ного слоя создаются предпосылки для дальнейшего увеличения его мощности и окультуренности почвы.

По мнению основоположника земледельческой механики ака-демика В. П. Горячкина, вспашка как наиболее распространенный прием основной обработки почвы является самой важной, самой продолжительной, самой дорогой и самой тяжелой работой. На ее выполнение расходуется до 40 % энергетических и 25 % трудо-вых затрат.

В настоящее время распространены следующие приемы основ-ной обработки почвы :

а) культурная вспашка (плугами с предплужниками);

б) обработка орудиями специальных конструкций (ярусные плуги, плуг Мальцева, глубокорыхлители, куль-тиваторы);

в) обработка фрезерной машиной;

г) обработка дисковыми плугами, образование щелей щелерезами на 35-50 см и другие.

Под приемами поверхностной обработки почвы понимается од-нократное механическое воздействие на нее рабочими органами почвообрабатывающих машин и орудий на глубину до 12-14 см.

К приемам поверхностной обработки относятся : лущение от-вальными и дисковыми (орудиями) лущильниками; культивация с подрезающими и рыхлящими рабочими органами, в том числе штанговыми культиваторами и плоскорезами; окучивание окучни-ками; боронование различными типами борой с разными формами рабочих органов; шлейфование шлейф-волокушами, шлейф-боро-нами; прикатывание различными типами катков с разной формой рабочей поверхности; малование; поделка валиков, борозд, лу-нок, грядок и гребней.

Обработка почвы является важнейшим агротехническим мероприятием, способствующим повышению урожайности культурных растений. В результате обработки почвы происходит

Уничтожение сорняков, создаются водный, воздушный, питательный и тепловой режимы для корней растений, а также для микроорганизмов почвы.

Наиболее важными способами основной обработки почвы являются вспашка, безотвальная (в том числе плоскорезная) обработка и фрезерование.

Вспашка - это основной прием обработки почвы. При этом происходит оборачивание и рыхление пласта почвы на глубину 20-25 см. Обычно вспашку производят плугом с предплужником. Предплужник способен срезать лишь поверхностный слой почвы около 10-12 см толщиной.

Безотвальная обработка производится плугом без оборачивания пласта почвы. Глубина вспашки достигает 30-40 см.

Обычно этот способ применяют в засушливых районах, подверженных ветровой эрозии.

Плоскорезную обработку почвы осуществляют с помощью специальных плоскорезов, при этом остается нетронутой значительная часть стерни (стерня - срезанные стебли злаков, оставшиеся на корню после жатвы). Зимой стерня задерживает снег, снижает скорость ветра в приземном слое и тем самым предохраняет почву от выдувания и повышает в ней запасы продуктивной влаги.

Фрезерование - обработка почвы с применением вращающихся фрез на глубину до 20 см, что позволяет тщательно перемешивать и измельчать как верхний плодородный слой почвы, так и более глубинные бесполезные слои.

Обычно его применяют на подзолистых и серых лесных почвах для более интенсивного их окультуривания.

Существуют также способы поверхностной обработки почвы: лущение, культивация, боронование и прикатывание.

Лущение почвы проводят на глубину - 6-16 см, при этом подрезают стерню и сорняки, а также крошат и частично оборачивают почву. Иногда применяют лущение на уже вспаханных участках с целью сохранения влаги. Для лущения используют лемешные или дисковые лущильники.

Культивация - это рыхление почвы на глубину от 5 до 10 см без оборачивания верхнего слоя. С помощью культивации подрезают сорняки, обрабатывают пропашные культуры, а также готовят почву к посеву. Культивацию проводят с использованием культиваторов или окучников.

Боронование - рыхление почвы боронами конструкции на глубину от 2 до 8 см. Боронование применяют для обработки почвы после дождей или зимы с целью перемешивания и выравнивания поверхности почвы с частичным уничтожением сорняков.

Прикатывание - способ уплотнения почвы, например, после вспашки, осуществленной в сухую погоду. Прикатывание позволяет разбить глыбистые части почвы. Для этого используют различные катки.

Сочетание различных приемов и способов обработки почвы создает систему обработки почвы под яровые, озимые культуры.

Существуют основная (зяблевая), весенняя предпосевная и послепосевная обработки почвы. Зяблевую обработку проводят осенью после сбора урожая и осеннего лущения стерни.

Большое значение в системе обработки почвы под озимые культуры имеют пары.

Существуют чистые и занятые пары. Чистые пары находятся в разрыхленном виде и не заняты какими-либо растениями. Они играют важную роль в накоплении влаги и в создании устойчивого земледелия в засушливых районах. На занятых парах в течение некоторого времени выращивают культуры, которые быстро растут и рано освобождают поле. Парозанимающие культуры убирают в ранние сроки (например, ранний картофель, подсолнечник или кукурузу на зеленый корм), после чего готовят почву под посев озимой культуры.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Одноклассники

Под механической обработкой почвы, в отличие от обработки полей или посевов, понимается воздействие на нее рабочими орга-нами почвообрабатывающих машин и орудий на ту или иную глу-бину в целях оптимизации почвенных условий жизни растений.

Механическая обработка почвы наряду с севооборотами и удобрениями является важнейшим звеном интенсивных систем земледелия.

В настоящее время широко применяются почвозащит-ные методы обработки почвы и проводятся противоэрозионные мероприятия, осуществляются меры по увеличению плодородия почв и внедрению интенсивных технологий возделывания сельско-хозяйственных культур.

Под влиянием рациональной механиче-ской обработки изменяются агрономические свойства почвы, улуч-шаются водно-воздушный, тепловой и питательный режимы, уничтожаются сорные растения и повышается урожайность сель-скохозяйственных культур.

В отличие, например, от удобрения или орошения полей меха-ническая обработка сама по себе не добавляет к почве какого-либо вещества или энергии. Однако она изменяет соотношение объемов твердой, жидкой и газообразной фаз в почвенной систе-ме и влияет на физические, химические, физико-химические и биологические процессы, ускоряя или замедляя темп синтеза и раз-рушения органического вещества. Механическая обработка играет важную роль в создании благоприятных агрофизических условий плодородия почвы, являясь одним из важнейших способов борьбы с сорняками, вредителями и болезнями сельскохозяйственных культур.

Для обеспечения оптимальных почвенных условий и получения устойчивых и высоких урожаев обработкой почвы решаются сле-дующие задачи :

1) придание почве на той или иной глубине мелкокомковатого состояния с благоприятным строением, чтобы обеспечить хорошие водно-воздушный, тепловой и питательный режимы;

2) усиление круговорота питательных веществ путем извлече-ния их из более глубоких горизонтов в зону пахотного слоя, а так-же активизации полезных микробиологических процессов в почве;

3) уничтожение сорных растений, возбудителей болезней и вре-дителей;

4) заделка на необходимую глубину удобрений и растительных остатков или оставление стерни на поверхности почвы;

5) предупреждение эрозионных процессов и связанных с этим потерь воды и питательных веществ;

6) лишение жизненности многолетней растительности при об-работке целинных и залежных земель, а также полей, занятых сеяными многолетними травами;

7) придание необходимых свойств и состояния верхнему слою почвы для заделки высеваемых семян на заданную глубину;

8) создание условий для понижения солевых горизонтов и предупреждение повышения уровня грунтовых вод.

В результате обработки создается необходимое соотношение объемов капиллярных и некапиллярных промежутков между твердыми элементами почвы . От этого зависят водно-воздушный, тепловой и питательный режимы почвы.

Обработка почвы требует больших энергетических затрат . По-этому ее совершенствование применительно к зональным особен-ностям и требованиям различных культур - первостепенная зада-ча земледелия.

Возможно, Вас так же заинтересует:

Культура Технологические процессы (операции) при обработке почвы

Задачи обработки почвы выполняются с помощью следующих технологических процессов или операций:

1. рыхление и крошение;

2. оборачивание;

3. перемешивание;

4. уплотнение;

5. выравнивание;

6. подрезание;

7. профилирование, то есть придание поверхности почвы крайне важной формы.

Рыхление почвы – технологическая операция, обеспечивающая изменение взаимного расположения почвенных отдельностей с увеличением объёма пор, то есть придания им такого положения, когда они прилегают друг к другу менее плотно. В результате увеличивается порозность почвы и снижается её плотность. При рыхлении почвы происходит и её крошение.

Рыхление бывает глубокое, обычное, мелкое и поверхностное. По существующей в стране классификации, обработка почвы до глубины 0,08 м считается поверхностной, от 0,08 до 0,16 м – мелкой, на 0,16…0,24 м — обычной и свыше 0,24 м – глубокой. В производственной практике под полевые культуры максимальная глубина обработки почвы 0,25…0,30 м, при мелиоративной обработке солонцовых почв и плантажной вспашке под сады и лесонасаждения – до 0,50…0,60 м.

Для чего крайне важно периодическое глубокое рыхление?

1. В результате него создаётся глубокий окультуренный, то есть улучшенный с помощью удобрений и обработки, слой почвы. Ряд учёных доказали, что чем больше объём почвы, который используется растениями, тем выше их урожай (табл. 1).

Таблица 1

Влияние объёма почвы на урожай овса (по К. К. Гедройцу)

Масса почвы в сосуде, кг Урожай овса, г/сосуд
4,6 19,8
10,1 47,2
13,2 65,8

А как раз на глубоком окультуренном слое почвы растения развивают мощную корневую систему, которая охватывает большой объём почвы, извлекая оттуда больше влаги и питательных веществ (табл. 2).

Таблица 2

Масса и распределœение корневой системы ячменя по почвенному профилю, % (Учхоз ВГСХА «Горная Поляна», 1979…1983 гᴦ.)

2. При глубоком рыхлении почва приобретает благоприятное строение и сложение, за счёт чего улучшается водный, воздушно-тепловой и питательный режимы. Дело в том, что под влиянием силы тяжести, атмосферных осадков, разрушения структуры, проходов по полю сельскохозяйственной техники почва уплотняется, слёживается, приобретая гексагональное сложение. Почвенные отдельности плотно прилегают друг к другу, уменьшается порозность, в почву хуже проникают вода и воздух, замирают полезные аэробной микробиологические процессы. Рыхлящие орудия вспушивают почву, она приобретает рыхлое кубическое сложение, увеличивается пористость, усиливаются аэробные микробиологические процессы и накапливается больше питательных веществ, лучше развиваются корни растений. Разрыхлённая почва обладает большей водопроницаемостью и влагоёмкостью (рис. 1).

Так, тяжелосуглинистая светло-каштанова почва после рыхления имеет плотность около 0,9 т/м3, а к уборке может уплотняться до 1,4…1,5 т/м3.

Основные способы обработки почвы

Оптимальная же для растений плотность находится в пределах 1,1…1,3 т/м3. Рыхление почвы и позволяет поддерживать данный оптимум (рис. 2).

3. Глубокая обработка имеет большое фитосанитарное значение, так как способствует подавлению сорняков, вредителœей и болезней сельскохозяйственных культур, усиливает разложение токсических веществ.

4. Глубокая обработка имеет большое значение на склонах, так как уменьшает поверхностный сток осадков, которые лучше впитываются в рыхлую почву, и тем самым предохраняет почву от водной эрозии.

Возникает вопрос – сколько раз, то есть, как часто нужно рыхлить почву глубоко? Это далеко не праздный вопрос, так как каждый сантиметр глубины увеличивает энергозатратность обработки почвы на 5…7%.

От чего зависит глубина обработки почвы?

1. Глубина и частота рыхления зависят от почвенно-климатических условий, определяющих скорость осœедания почвы. Чем быстрее и сильнее уплотняется данная почва, тем глубже и чаще её нужно обрабатывать. Во влажных районах под влиянием осадков почва осœедает быстрее, в засушливых – медленнее. Структурные почвы уплотняются меньше, чем бесструктурные. По этой причине, по данным многих авторов (Д. И. Буров, П. К. Иванов, В. И. Румянцев и др.), в Поволжье благоприятное сложение и строение на чернозёмных структурных почвах после рыхления сохраняется 3…4 года, на плохо оструктуренных каштановых – 2…3 года.

2. От засорённости и увеличивается на сильно засорённых многолетними сорняками почвах.

3. От биологических особенностей возделываемых культур и их предшественников.

4. От применяемой системы удобрений.

Сегодня установлено, что с учётом положительного последействия глубокого рыхления, обработка почвы в севообороте должна быть разноглубинной и состоять из периодической глубокой и менее глубоких обработок (табл. 3, 4).

Таблица 3

Приемы механической обработки почвы

Приемом называют однократное воздействие на почву рабочими органами почвообрабатывающих машин и орудий с целью выполнения одной или нескольких операций (ГОСТ 16265 - 89).

Приемы основной обработки почвы

Под основной обработкой понимают первую наиболее глубокую обработку почвы при помощи вспашки.

Вспашку выполняют плугами с отвалами различной конструкции, что определяет несходство технологических операций по составу и качеству исполнения. Плуги с винтовыми отвалами хорошо оборачивают пласт почвы, но плохо его крошат, напротив, плуги с цилиндрической поверхностью отвала хорошо крошат пласт почвы, но плохо его оборачивают.

Если при работе плуга пласт почвы полностью оборачивается (на 180°), то это вспашка с оборотом пласта. При неполном опрокидывании пласта почвы и косой его постановке (на 135°) на ребро обработку называют вспашкой со взметом пласта.

Однако лучшее оборачивание и крошение пласта почвы, особенно полей, освобождающихся из-под многолетних трав, достигается при вспашке плугом с культурным отвалом и установленным перед ним предплужником. Предплужник снимает на 2/3 ширины захвата основного корпуса верхний слой почвы толщиной 8 — 10 см, содержащий стерню, растительные остатки, вредных насекомых и фитопатогенных микроорганизмов, семена и органы вегетативного возобновления сорняков, и сбрасывает его на дно борозды.
Для того чтобы хорошо прикрыть и заделать верхний слой почвы, основной корпус должен работать глубже предплужника минимум на 10 — 12 см. Он поднимает на отвал этот нижний слой, который хорошо оструктурен и сравнительно свободен от вредных организмов, оборачивает, крошит его и полностью присыпает им ранее сброшенный верхний слой.
Такую вспашку плугом с культурным отвалом и с предплужником на глубину не менее 20 — 22 см называют культурной, или классической, вспашкой (по В. Р. Вильямсу). Ее широко применяют в качестве осенней (зяблевой) вспашки в Нечерноземной и других зонах на полях, где отсутствует реальная опасность эрозионных процессов.

При вспашке отвальными плугами пласт почвы отваливается вправо. Поэтому если вспашку каждого загона, на которые разбивают поле, начинают с краев, то в середине загона образуется разъемная борозда, и такой способ называется вспашкой вразвал. Если вспашку начинают с середины загона, там образуется свальный гребень, и такой способ называется вспашкой в свал.

Для вспашки используют различные отвальные плуги (ПЛН-5-35, ПТК-9-35, ПВН-3-35 и др.). При пользовании оборотными плугами поле не разбивают на загоны и на нем не образуются ни развальные борозды, ни свальные гребни. Такую вспашку называют гладкой.

В районах, подверженных ветровой эрозии, для сохранения на поверхности стерни и других растительных остатков, которые предохраняют почву от выдувания и накапливают большое количество влаги в виде снега, так необходимой в засушливых степных районах, рыхление почвы проводят без оборачивания, которое называется безотвальной вспашкой.
Такую вспашку на глубину 27 — 30 см и более, разработанную в начале 50-х годов XX в. академиком Т. С. Мальцевым, широко применяют в Западной и Восточной Сибири и европейской части России с использованием ранее безотвальных плугов, а позднее плоскорезов и глубокорыхлителей различной конструкции (КПП-2,2; КПГ-2-150; КПГ-250; ГУН-4, Параплау и др.).

В некоторых случаях безотвальную вспашку проводят весной или даже осенью для рыхления уплотнившейся почвы с целью усиления аэрации и микробиологической деятельности, освобождения пахотного слоя от излишней влаги, разрушения плужной подошвы, а также на полях, ранее вспаханных отвальными плугами.

На полях с не выровненной поверхностью и содержащих большое количество слаборазложившихся растительных остатков (ежегодная вспашка в одном направлении, образование кочек, куртин сорняков), хорошие результаты в качестве основной обработки обеспечивает фрезерование.
При работе фрезерных орудий (ФНБ-0,9; ФН-1,25; КФГ-3,6 и др.) почва до глубины 10-20 см интенсивно крошится и тщательно перемешивается, при этом создается гомогенный пахотный или же сразу только посевной слой, куда одновременно высевают семена культур.

Нередко с основной обработкой почвы совмещают другие операции. Так, за каждым основным корпусом плуга устанавливают рыхлящие лапы, которые работают на 10 — 15 см ниже пахотного слоя, способствуя лучшей водонепроницаемости и аэрации подпахотных горизонтов. Для отвода излишней воды с переувлажненных полей используют обычные плуги с кротователем, который ниже основного корпуса на глубине 35 — 40 см формирует дрену диаметром 4 — 6 см, сохраняющуюся 2 — 3 года на тяжелосуглинистых почвах. На вспаханных полях для формирования дрен в подпахотном слое используют специальные кротователи (РК-1,2; МД-6 и др.).

Приемы поверхностной и мелкой обработки почвы

Обработка почвы на глубину до 8 см (посевной слой) называется поверхностной, а на глубину 8 — 16 см — мелкой. Целесообразность таких обработок обусловливается или необходимостью создать наиболее благоприятные условия для размещаемых в посевном слое семян культур, или невозможностью по ряду агротехнических и хозяйственных причин более глубоких обработок.

Лущение жнивья выполняют на полях, освободившихся из-под зерновых культур, оставляющих на поле стерню, или после уборки других однолетних культур (просо, гречиха, однолетние травы, кукуруза и т.п.).
В стерне и сохранившихся растительных остатках обитают и продолжают размножаться вредные насекомые и микроорганизмы, вегетируют и плодоносят пожнивные (щетинник сизый, куриное просо, марь белая, щирица запрокинутая и т. п.) и многолетние сорняки, а сильно распыленный и уплотненный при многочисленных проходах почвообрабатывающих и уборочных машин верхний слой очень интенсивно теряет влагу из пересохшей почвы.
С помощью лущения, проводимого сразу после уборки культуры обычно на глубину 6 — 8 см, а в засушливых районах нередко с прикатыванием в агрегате, одновременно решается ряд важнейших задач: подрезая сорняки, оно лишает вредителей свежего органического вещества как источника пищи; заделывая семена сорняков в более влажный слой почвы, провоцирует их прорастание; взрыхленный верхний слой почвы как естественная мульча резко сокращает физическое испарение влаги и позволяет без ухудшения качества провести последующую основную вспашку на две-три недели позднее (при этом избегается чрезмерная напряженность в полевых работах).

Лущение обычно проводят дисковыми лущильниками на глубину не выше 10 — 12 см (ЛДГ-5; ЛДГ-10 и др.), а также лемешными лущильниками (ППЛ-5-25; ППЛ-10-25), работающими на глубину 12 — 17 см, но иногда применяют и дисковые бороны. При запаздывании лущения на 7 — 10 дней все отмеченные выше его преимущества почти полностью утрачиваются.

Дискование как прием выполняет те же технологические операции (крошение, рыхление, перемешивание, частичное оборачивание, подрезание сорняков), что и лущение жнивья дисковыми орудиями. Однако его чаще применяют на вспаханных полях для разделки крупных глыб, заделки широких борозд, выравнивания гребней и микролиманов и предварительно перед вспашкой для разрезания и разделки плотной дернины многолетних сеяных и луговых трав (БДТ-3,3; БДНТ-3,5 и др.), для измельчения перекрестным дискованием (или лущением) корневищ пырея и органов вегетативного возобновления других многолетних сорняков (осот полевой, свинорой пальчатый и др.).

Культивация предназначена для сплошной (на глубину 5 — 12 см) или междурядной (до 16 см) обработки почвы, при которой происходит крошение, рыхление, частичное перемешивание почвы и подрезание сорняков и прежде всего корневых отпрысков не позднее фазы 3 — 4 листьев у розеток многолетних сорняков. Она особенно необходима для сплошной обработки непосредственно перед посевом культуры, чтобы создать выровненное под взрыхленным слоем "плотное ложе" для семян культуры.

Располагаясь на плотном ложе, семена быстро набухают, поглощая поступающую снизу по капиллярам почвенную влагу, и дружно прорастают. Сплошную культивацию систематически ведут и на паровых полях, но в засушливых районах ее совмещают с легким последующим прикатыванием (КПС-4, КПГ-4). Наиболее часто для этих работ используют культиваторы со стрельчатыми лапами.

Для междурядной обработки используют как обычные культиваторы (КРН-4,2; КРН-5,6), которые комплектуются набором сменных рабочих органов (стрельчатые лапы, односторонние полольные лапы, рыхлительные долотообразные окучники, прополочные боронки и т.п.), так и специальные культиваторы по уходу за посевами сахарной свеклы, овощных культур ГУСМК-5.4Б, КФ-5.4, КОР-4.2.

В степных эрозионноопасных районах для сплошной паровой обработки или предпосевной подготовки почвы используют штанговый культиватор (КШ-3,6), у которого рабочим органом служит четырехгранная горизонтально расположенная и вращающаяся в направлении, обратном направлению движения орудия штанга, выносящая таким образом на поверхность с глубины 5 — 10 см растительные остатки. Для этой же цели применяют и противоэрозионный культиватор КПЭ-3,8А с подобным штанговым приспособлением, а также различные плоскорезы (КПП-2,2; КПГ-2-150; КПШ-9 и др.), сохраняющие до 80 — 95% стерни на поверхности почвы.

Основы агрономии

Боронование почвы применяют во всех системах обработки и для этого используют различные конструкции борон.

С началом полевых работ на вспаханных полях применяют первоочередной прием - ранневесеннее боронование ("закрытие влаги", "покровное боронование"), а также поперечное боронование хорошо перезимовавших посевов озимых, обычно выполняемое в период физической спелости почвы зубовыми боронами с рамой жесткой конструкции (БЗТС-1; БЗСС-1; БП-0,6).
Тяжелые бороны рыхлят почву до 7 — 10 см, а легкие — до 5 — 8 см. Взрыхляя верхний слой (2 — 4 см) почвы начавшего подсыхать поля, создают как бы естественный мульчирующий слой. Он прикрывает нижерасположенный и насыщенный капиллярной влагой более плотный слой.
Вследствие этого физическое испарение почвенной влаги сокращается в 3 — 5 раз. Достаточное количество влаги и повышенная температура провоцируют массовое прорастание в верхнем слое семян сорняков, которые полностью уничтожаются последующими обработками.

Для ухода за посевами пропашных культур (картофель, кукуруза, подсолнечник и др.) в довсходовый период в фазу "белой ниточки" малолетних сорняков высокоэффективны навесные сетчатые бороны (БСО-4; БС-2; БСН-4), глубину работы которых можно регулировать в пределах 3 — 8 см и которые из-за независимой подвески каждого зуба великолепно копируют поверхность почвы (гладкая или гребнистая поверхность).

При образовании почвенной корки до появления и в момент появления всходов применение зубовых и сетчатых борон опасно ддя слабых проростков: при движении по полю бороны хотя и разрушают корку, но одновременно ее смещают, обрывая проросток или его корневую систему. В такой ситуации при уходе за посевами незаменима игольчатая борона БИГ-3. При вращении ее игольчатые диски вертикальными уколами разрушают почвенную корку и не смещают ее, совершенно не повреждая всходы культур. Борона БИГ-3 и ее модификации — идеальное орудие для ранневесеннего боронования и предпосевной подготовки полей по стерневому фону в районах, подверженных ветровой эрозии.

Прикатывание помимо уплотнения почвы частично рыхлит ее, дробя влажные крупные комки, выравнивает поверхность, улучшает контакт семян с почвой и ускоряет их прорастание, что объясняется еще и тем, что при уплотнении почва быстрее нагревается и ее температура повышается на 1,5 — 2 °С. Выполняют прикатывание различными катками, проводя его не позднее чем на 2 — 3-й день после сева культуры и при опасности сильного иссушения посевного слоя ввиду его чрезмерной рыхлости.

Шлейфование, или волочение , применяют для выравниваний поверхностного рыхления почвы (на 3 — 5 см). Весной его мод проводить на один-два дня раньше ранневесеннего боронована и особенно на почвах легких по механическому составу. На тяжелых почвах может образоваться почвенная корка вследствие "замазывания" еще переувлажненной почвы. Выполняют шлейфование волокушей, но чаще шлейф-бороной (ЩБ-2,5), имеющей переднем брусе ряд зубьев с регулируемым углом их наклона.

Агротехнические требования к обработке почвы

Обработка почвы.

Стойка корпуса ПНЯС 08.000 на плуг ПНЯ 4-42, ПНБ 4-40

Цена: 1752 грн.

Стойка корпуса ПНЯС 08.000 на плуг ПНЯ 4-42, ПНБ 4-40

Стойка ПНЯС 08.000 — применяется на плугах серии ПНБ 4-40, 5-40 и ПНЯ 4-42, 6-42. Применяется для крепления корпуса к раме. Крепится к раме плуга при помощи планки и скобы.
Изготавливается из круга диаметром = 75мм.
Высота стойки — 850 мм.
Вес — 26 кг.
Проходит процесс термообработки.

Большой ассортимент изготавливаемых запчастей на плуги 3-х, 4-х, 5-ти, 6-ти, 8-ми корпусные как по чертежам отечественного производителя, так и модернизированных плугов с полувинтовыми отвалами и на высоких круглых стойках.
Также производим запчасти на культиваторы КПС, КРН, КПЕ; на бороны БДВП (Краснянка), БДТ, ДМТ (Деметра), БДП, Солоха, БДН.
Все плуги сертифицированы, имеют гарантийный срок.
Отправляем через Новую Почту, Ин Тайм, Деливери.

Цена: 1752 грн.

Позвонить

тел.: 067-485-62-62

(Представитель: Татьяна)

другие товары и услуги компании

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Рассолова Эльвира Геннадьевна. Влияние приемов основной обработки почвы и степени интенсивности технологии на урожайность ячменя в условиях Центрального района Нечерноземной зоны: диссертация... кандидата сельскохозяйственных наук: 06.01.09, 06.01.01.- Москва, 2005.- 174 с.: ил. РГБ ОД, 61 05-6/436

Введение

1. Обзор литературы 7

1.1. Задачи обработки почвы 7

1.2. Влияние агроприёмов на физические свойства почвы 12

1.3. Влияние агроприёмов на агрохимические свойства почвы 21

1.4. Влияние агроприёмов на водные свойства почвы 27

1.5. Влияние агроприёмов на биологические свойства почвы 30

1.6. Влияние агроприёмов на тепловые свойства почвы 33

1.7. Влияние агроприёмов на фитосанитарное состояние посевов 34

1.8. Технология выращивания ячменя 39

2. Теоретическое обоснование урожайности ячменя 50

2.1. Приход ФАР на посевы и урожайность 51

2.2. Влагообеспеченность и продуктивность ячменя 55

2.3. Биоклиматическая продуктивность ячменя 58

2.4. Урожайность ячменя по эффективному плодородию дерново-подзолистых почв 61

2.5. Моделирование фитометрических параметров ячменя 64 Заключение 68

3. Цель, задачи и методика исследований 69

3.1. Цель и задачи исследований 69

3.2. Схема опыта и методика проведения исследований 69

3.3. Почвенно-климатические условия 77

3.4. Погодные условия в годы проведения исследований 78

3.5. Место и условия проведения наблюдений и исследований в опыте 80

3.6. Агротехника ячменя и яровой пшеницы в опыте 82

4. Результаты исследований 83

4.1. Влияние приёмов основной обработки почвы на водно-физические свойства почвы 83

4.2. Влияние приёмов основной обработки почвы на биологические свойства почвы 93

4.3. Влияние приёмов основной обработки почвы на структуру урожая 95

4.4. Влияние приёмов основной обработки почвы на агрохимические свойства почвы и пищевой режим почв 102

4.5. Влияние приёмов основной обработки почвы на засорённость посевов, зерна и поражение болезнями 109

4.6. Влияние приёмов основной обработки почвы на урожайность и качество урожая 114

5. Агротехническая, экономическая, энергетическая эффективность приёмов основной обработки почвы 120

5.1. Агротехническая и экономическая эффективность изучаемых вариантов 120

5.2. Энергетическая оценка вариантов опыта 125

Список литературных источников 134

Приложения 165

Введение к работе

Стабильное производство продуктов питания высокого качества и обеспечение высококачественным сырьем - важнейшая задача жизнеобеспечения населения планеты. Проблема продовольствия решается, в основном, через базовую отрасль сельского хозяйства - земледелие, поэтому главная задача - обеспечение устойчивости земледелия на основе рационального использования земли, сохранение и повышение плодородия почвы и урожайности сельскохозяйственных культур, на основе применения научно обоснованных зональных систем земледелия.

Состояние почв оказывает воздействие на окружающую среду и природные ресурсы, уровень экономического и социального развития государства, здоровье населения.

Обработка почвы занимает большой удельный вес в себестоимости сельскохозяйственной продукции, поэтому совершенствование систем обработки с учётом сокращения затрат на единицу продукции - актуальная проблема.

Как показывают результаты исследований, полученные в нашей стране и за рубежом, длительное использование мелких поверхностных обработок в севообороте приводит к ухудшению в нижних слоях агрохимических и биологических свойств почвы, пищевого режима, проникновению корней растений в нижние слои, следовательно, - к падению эффективного плодородия почвы. Кроме того, при поверхностной заделке органических удобрений и перемешивании их с пахотным слоем, происходит быстрая минерализация органического вещества без существенного прироста гумуса в нижних слоях почвы. С органическими

удобрениями почва обогащается семенами сорняков, которые затем необходимо уничтожать.

Как показывают научные данные и практика, без создания мощного корнеобитаемого слоя получать стабильно высокие урожаи не всегда удаётся. Поэтому, одним из способов окультуривания дерново-подзолистых почв является углубление пахотного слоя. Это возможно за счёт разрыхления подпахотных слоев чизелями - глубокорыхлителями, плоскорезами, плугами без отвалов, послойного внесения органических удобрений и пласта многолетних трав.

Дифференцированная обработка почвы должна более полно учитывать почвенно-климатические условия зоны, биологические особенности сельскохозяйственных культур.

В условиях интенсивного земледелия и в связи с необходимостью перехода к энергосберегающим почвозащитным технологиям, необходимо обоснование приёмов обработки почвы, для поддержания почвенного плодородия.

Исследования проводили в многолетнем стационарном полевом
опыте, заложенном в 1972 году под руководством заведующего отделом
земледелия, доктора сельскохозяйственных наук Саранина Константина
Исидоровича в отделе земледелия НИИСХ ЦРНЗ по научно-технической
программе отделения земледелия Российской академии

сельскохозяйственных наук 0.51.01. "Усовершенствовать низкозатратные почвозащитные системы обработки почвы для севооборотов зерновой специализации, обеспечивающих снижение энергетических затрат" и в соответствии с планом научно-исследовательских работ отдела земледелия НИИСХ ЦРНЗ по теме: "Усовершенствовать низкозатратные почвозащитные

системы обработки почвы для севооборотов зерновой специализации, обеспечивающих снижение энергетических затрат."

В ходе многолетних исследований изучены теоретические вопросы использования приёмов обработки на повышение плодородия дерново-подзолистой среднесуглинистой почвы, научно обоснованы приёмы обработки в Центральном районе Нечернозёмной зоны России. Даны агротехническая, экономическая, энергетическая оценки приёмов основной обработки почвы.

Установлено, что наиболее перспективные варианты обработки почвы: сочетание вспашки на 20 см с поверхностной обработкой на 8 см и чизелевание на 20 и 40 см, обеспечивающие снижение затрат на обработку на 4-12% при повышении продуктивности ячменя по сравнению с контрольным вариантом (вспашка на 20 см).

Пользуясь случаем, считаю своим долгом выразить признательность и искреннюю благодарность научным руководителям: заведующему кафедрой общего земледелия, растениеводства, агрохимии и почвоведения, кандидату сельскохозяйственных наук, доценту Л.С. Фастюкову, заведующему отделом земледелия, доктору сельскохозяйственных наук Е.В. Дудинцеву, а также коллективу отдела земледелия научно-исследовательского института сельского хозяйства центральных районов Нечернозёмной зоны и коллективу кафедры Российского государственного аграрного заочного университета за оказанную помощь, практические советы и доброжелательное отношение в выполнении, обобщении, анализе материала.

Влияние агроприёмов на физические свойства почвы

Для обоснования рациональных технологий и выбора эффективных приёмов обработки почвы интерес представляют изучение динамики сложения пахотного и подпахотного слоев под полевыми культурами как первичного показателя физического состояния почв. Изучение динамики сложения почвы в течение вегетации сельскохозяйственных культур, в зависимости от систем обработки выявляет устойчивые диагностические критерии и устанавливает их оптимальные параметры для необходимого воздействия на почву, обеспечивающего создание и поддержание благоприятных агрофизических условий для роста и развития полевых культур (А.И. Пупонин, 1984).

Обоснование механической обработки дерново-подзолистых почв сводится к изменению их строения и сложения, так как почвы суглинистого и глинистого механического состава малоструктурны и быстро уплотняются. Строение почвы - расчленение почвенного профиля на генетические горизонты и их смена в вертикальном положении. Сложение почвы и её отдельных горизонтов - внешнее выражение их плотности и порозности. Равновесная плотность этих почв превышает 1,35-1,40 г/см3, что ухудшает использование растениями воды, элементов питания и развитие корневой системы большинства сельскохозяйственных культур, снижает окислительно-восстановительный потенциал и ферментативную активность почвы (СИ. Долгов, С.А. Модина, 1969; В.И. Румянцев и др., 1979; J.C. Siemens et al., 1971; N. Nelson, 1976; G. Schnaser, 1976; K.H. Hartge, 1979; D.C. Reicosky, D.K. Cassel, R.L. Blevin et al., 1977; Soil Fertility Mannual, Potash and Phosphors, 1979; S. Jenkins, 1981; R.P.C. Morgan, 1986).

Под улучшением физических свойств дерново-подзолистых почв, в первую очередь, имеют в виду плотность (П.А. Костычев, 1949). Плотность -масса единицы сухой почвы ненарушенного сложения (В.Ф. Вальков, 1986). От неё зависят все режимы и процессы, протекающие в почве: диффузия газов, воздухоёмкость, водопроницаемость, испаряющая и водоподъёмная способность, теплоёмкость, теплопроводность, а также микробиологические и окислительно-восстановительные процессы. Плотность влияет на технологические свойства, тяговое сопротивление, качество обработки почвы, что отражается на количестве и качестве урожая (И.П. Котоврасов, 1984; А.А. Борин, 2003).

Величина оптимальной плотности зависит от типа почвы, механического состава, структуры, обеспеченности питательными веществами (И.Б. Ревут, 1969, 1970; А.В. Королёв, 1970; П.П. Заев, А.В. Королёв, 1972; А. Тинджюлис, Е. Гречене, А. Мешаускене, 1974; Б.А. Доспехов, И.М. Панов, А.И. Пупонин, 1976; Э.А. Реппо, Н.И. Афанасьев, А.Я. Борук и др., 1984; А.П. Тинджюлис, А.В. Зимкувене, 1985).

Оптимальная плотность - почвенно-зональная характеристика -зависит от климатических условий и биологических особенностей растений (И.Б. Ревут, 1970; СВ. Нерпин, А.В. Судаков, 1985).

Оптимальная плотность - при которой распределение пор по их размерам обеспечивает благоприятную для растений водо- и воздухопроникающую способность почвы и передвижение по почве воды и воздуха, обеспечивающее растения максимальным количеством доступной воды при достаточной степени аэрации (И.П, Котоврасов, 1984; F.J. Veihmeyer, А. Н. Hendrickson, 1948).

Оптимальная плотность (объёмная масса) суглинистых дерново-подзолистых почв для выращивания зерновых культур - 1,10-1,30 г/см, для песчаных и супесчаных почв - 1,35-1,50 г/см (П.П. Заев, А.В. Королёв, 1971; С.А. Наумов, 1977; А.И. Пупонин, 1978, 1984; В.М. Сорочкин, 1982; М. Suskevic, М. Kos, 1982).

При определении влияния агроприёмов на физические свойства почвы важный показатель - пористость (порозность) почвы, особенно соотношение объёма некапиллярных и капиллярных пор, которое определяет водно-воздушные свойства почвы: водопроницаемость, влагоёмкость, испаряемость, аэрацию, влияющие на водно-воздушный режим и биологическую активность почвы (А.И. Пупонин, 1984; П.Н. Берёзин, А.Д. Воронин, Е.В. Шеин, 1985).

Влагообеспеченность и продуктивность ячменя

Величину программируемой урожайности по приходу ФАР определяют при оптимальных условиях факторов роста и развития растений. Но получение заданной урожайности ограничивается другими факторами жизнедеятельности растений (углекислота воздуха, необходимая для фотосинтеза; плодородие почвы; реакция почвенного раствора; воздушный режим; температура почвы и воздуха; потенциальная продуктивность сорта или гибрида, реализация которых возможна при районировании). Поэтому, нельзя ориентировать производство на получение потенциальной урожайности, надо обосновать величину заданной урожайности по почвенно-климатическим условиям (М.К. Каюмов, 1981; И.С. Шатилов, 1993, 1998; Х.Г. Тооминг, 1994; И.С. Кочетов, 1999).

Многолетними исследованиями выявлено, что для обоснования величины действительно возможного урожая надо использовать количество продуктивной влаги, накапливаемой за период вегетации культуры. Для ячменя эту величину определяют с начала вегетации (весной) и до уборки.

Показатель действительно возможного по влагообеспеченности почв и растений урожая определяют по формуле (М.К. Каюмов, 1989): Удву - действительно возможный урожай, урожай абсолютно сухой биомассы, ц/га; 100 - коэффициент перевода продуктивной влаги из мм в ц/га; W - количество продуктивной влаги, накапливаемой за период вегетации культуры, ресурсы продуктивной для растений влаги, мм/га; Kw - биологический коэффициент водопотребления (количество воды, затрачиваемое на формирование 1 ц сухой биологической массы), мм га/ц; Kffl - коэффициент хозяйственной эффективности урожая или доля основной продукции (зерна) в общей биологической массе (в долях от единицы).

Московская область с севера на юг имеет существенное различие по количеству выпадаемых осадков: в северных районах за год выпадает 600-620 мм, на юго-востоке области - 500-525 мм (Агроклиматический справочник по Московской области, 1973).

По данным агрометеорологической станции «Немчиновка» на Юго-Западе области количество выпавших осадков составляло в среднем за 3 года 202 мм с колебаниями по годам от 82 до 277 мм за период вегетации среднеранних сортов ячменя, 208 мм с изменением по годам от 85 до 280 мм в течение вегетации среднеспелых сортов, 223 мм с колебаниями в годы исследований от 109 до 292 мм за период роста и развития сортов среднепозднеи группы (табл. 2.2.).

За период вегетации разных групп сортов ячменя в годы исследований, весной, перед посевом в слое почвы 0-10 см содержалось в среднем 416 мм с колебаниями по годам от 340 до 546 мм. Из-за разного количества осадков, суммарное водопотребление по группам спелости колебалось от 422 до 8 мм. Учёт и знание всех составляющих влагообеспеченности растений даёт возможность правильно обосновать величину действительно возможного урожая этой культуры.

При определении этих показателей нами за основу принято количество продуктивной влаги от 618 до 639 мм, что соответствует суммарному водопотреблению трёх групп спелости сортов. В таблице 2.3. приведена урожайность ячменя, которая реально возможна во влагообеспеченные годы.

Схема опыта и методика проведения исследований

Целью исследований было выяснение, на основе агротехнической и экономической оценок, влияния приёмов основной обработки почвы и степени интенсивности технологии на урожайность ячменя и снижение затрат на обработку в условиях Центрального района Нечернозёмной зоны.

Задачами наших исследований были:

1. Изучить влияние приёмов обработки почвы на водно-физические, биологические, агрохимические свойства почвы и пищевой режим почв.

2. Изучить влияние приёмов основной обработки почвы на фитосанитарное состояние посевов ячменя.

3. Выявить реакцию ячменя на почвенные условия жизни растений, изменяющиеся под влиянием глубокой вспашки, чизельной, фрезерной, поверхностной обработки в сравнении с обычной вспашкой.

4. Дать агротехническую, энергетическую, экономическую оценки разным приёмам основной обработки почвы под ячмень и технологиям возделывания ячменя, а также последействие обработки на урожайность яровой пшеницы.

Исследования по данной тематике проводятся отделом земледелия НИИСХ ЦРНЗ, в котором мои исследования касаются ячменя, идущего после тритикале: 1 люпин; озимая пшеница; 3 ячмень + подсев клевера; 4 клевер 1-го года пользования; 5 тритикале; 6 ячмень; 7 яровая пшеница; 8 овёс. Схема опыта: 1. Вспашка на 28-30 см (под все культуры) - ПЛН-3-35; 2. Чизельная обработка на 20-22 см (под все культуры) - ПЧ-2,5; 3. Вспашка на 20-22 см (под все культуры (контроль)) - ПЛН-3-35; 4. Поверхностная обработка (чередование вспашки на 20 см с поверхностной обработкой на 8 см) - БДТ-3; 5. Поверхностная обработка на 8-10 см под все культуры(бессменно)- БДТ-3; 6. Фрезерная обработка на 10-12 см (под все культуры) - ФБН-2; 7. Чизельная обработка на 38-40 см - ПЧ-2,5. Число вариантов - 7.

Размер учётной делянки: ширина - 4 м, длина -25 м, площадь учётной делянки - 100 м.

Размер посевной делянки: ширина - 6,3 м, длина - 25 м, площадь посевной делянки - 157,5 м (рис. 1). Способ посева рядовой с междурядьями 15 см (сеялка СН-16). Ширина продольной защитки 100 см, ширина торцевой защитки 115 см. Размещение вариантов - методом рендомизированных повторений. Повторность в опыте по территории 4-х кратная. Учёт урожая проводили сплошным методом.

Объектом исследования в опыте в 2002 и 2003 годах был сорт ярового ячменя «Эльф», а в 2004 году - яровая пшеница сорта «Лада».

Статистическая обработка урожая по Фишеру (Б.А. Доспехов, 1979), методом дисперсионного анализа для однофакторных опытов, проведённых методом рендомизированных повторений.

Минеральные удобрения вносили под предпосевную культивацию на запланированную урожайность ячменя - 50 ц/га.

Норма высева ярового ячменя и яровой пшеницы - 5 млн. всхожих семян на га. Анализ почвенных образцов проводили в агрохимической лаборатории НИИСХ ЦРНЗ: 1. Плотность сложения почвы (г/см3) определяли объёмно-весовым методом. Образцы отбирали по слоям 0-10, 10-20, 20-30, 30-40 см с помощью почвенного бура П.А. Некрасова с объёмом стакана 100 см. Число повторений - 4, согласно методике Г.Ф. Никитенко (1982). 2. Структурно-агрегатный состав по методу Н.И. Саввинова по слоям 0-10, 10-20, 20-30, 30-40 см. 3. Твёрдость почвы (кг/см2) - с помощью твердомера Алексеева по слоям 0-10, 10-20, 20-30, 30-40 см по 10 точек в 1 и 3 повторении. 4. Влажность почвы (%) по слоям 0-І0, 10-20, 20-30, 30-40 см. В момент закладки опыта (во время лущения стерни и вспашки). Весной - во время предпосевной культивации перед посевом и в момент появления всходов, в момент стеблевания (примерно 20-30 см), колошения, момент налива зерна и перед уборкой. Определяли термостатно-весовым методом. Термической сушкой при 105С в течение 6-8 часов. Результаты определяли в процентах от массы абсолютно сухой почвы на всех вариантах в 4 повторениях, делали по 4 скважины на делянке через каждые 10 см (Г.Ф. Никитенко, 1982) и ГОСТ 20915 -75.

5. Запас влаги (Wo6m) в мм водного слоя до глубины Н рассчитывали по формуле: Wo6tl,= 0,1(W, Д, h, + ... + Wn ДПЬП), где W], Wn - влажность почвенных слоев в весовых процентах; Дь Дп- соответствующие им значения плотности сложения почвы (г/см3); hi, hn - мощность почвенного слоя (см); Н - общая мощность слоя почвы, для которого проводятся расчёты (см). Запас влаги в метровом слое почвы определяли по слоям 0-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100 см на всех вариантах. Затем из общей влажности вычитали недоступную влажность почвы (мёртвый запас), которую находили путём вычисления максимальной гигроскопической влажности М и перерасчётом: М х 1,34 = недоступная влажность почвы. Осенью, весной (во время культивации) и сразу после уборки.

6. Биологическая активность почвы - целлюлозоразлагающую способность почвы определяли методом аппликаций по И.С. Вострову (1965) в модификации НИИСХ ЦРНЗ (Г.Ф. Никитенко, 1982) - путём разложения льняной ткани в почве. Закладку ткани проводили по слоям в период вегетации культурных растений. Закладывали по 5 аппликаций на всех вариантах на глубину до 40 см в 3 повторениях после посева, при появлении всходов.

7. Нитрификационная способность почвы на всех вариантах по слоям 0-10, 10-20, 20-30, 30-40 см - перед уборкой. По методу СП. Кравкова в модификации Болотиной и Абрамовой (Агрохимические методы исследования почвы, 1975), путём компостирования 100 г сухой почвы при влажности 60% от полной влагоёмкости при температуре 28-30С в течение

Влияние приёмов основной обработки почвы на водно-физические свойства почвы

Агротехника выращивания ярового ячменя и яровой пшеницы в опыте соответствовала рекомендациям для Центрального района Нечернозёмной зоны России. Основную обработку почвы начинали с лущения жнивья сразу после уборки предшественника - БДТ-3.

Через 2 недели после лущения проводили основную обработку почвы, согласно схемы опыта. Весной, по мере подсыхания почвы, проводили боронование зяби. Минеральные удобрения вносили под предпосевную культивацию -НРУ-0,5. Предпосевную культивацию с выравниванием почвы перед посевом проводили культиватором КПС-4 с боронами. Протравливание семян применяли перед посевом ПС-10, фунгицидом Винцит. Посев выполняли сеялкой СН-16. Опрыскивание посевов гербицидом Колос в дозе 10 г/га применяли в фазу кущения - ОПШ-15,

Обработку посевов против вредителей и болезней проводили: БИ-58 в дозе 1 кг/га и Байлетон в дозе 0,5 кг/га по мере необходимости - ОПШ-15. Уборку урожая проводили по делянкам в фазу полного созревания комбайном "Сампо-500".

В соответствии с программой исследований изучали влажность почвы, плотность сложения, скважность аэрации, твёрдость почвы и выясняли влияние приёмов обработки на изменение водно-физических свойств почвы и урожайность ячменя.

Влажность почвы в мае 2002 года была удовлетворительной (табл. 4.1.). В слое до 40 см влажность составляла от 14,0 до 17,9%, в фазу колошения - от 14,4 до 18,2%, перед уборкой- от 9,4 до 13,8%. Влажность по профилю почвы была несколько выше в слоях 10-20 и 20-30 см, а по вариантам - на вспашке на 20 см, чизелевании на 40 см,

В весенний период (перед посевом) 2003 года влажность почвы была высокой: от 15,1% на вспашке на 30 см до 25,1% на фрезеровании. В фазе колошения влажность несколько снизилась - до 16,2 - 19,4%. К уборке влажность почвы осталась высокой и составила от 19,6% (чизелевание, 40 см) до 25,8% (поверхностная обработка).

Запас продуктивной влаги в мм перед посевом 2002 года составлял от 30,0 до 45,5, то есть был удовлетворительным. К фазе колошения он несколько снизился - до 28,6-34,8 мм, а к уборке - до 11,1-21,5 мм.

В 2003 году перед посевом запас продуктивной влаги был выше, чем в 2002 году и составлял 52,7-72,2 мм, в колошение - 48,3-55.,4 мм и перед уборкой, вследствие выпадения осадков, - 66,4-74,3 мм, то есть несколько выше, чем в другие фазы (табл. 4.2.).

Между приёмами обработки по содержанию продуктивной влаги в 2002 и 2003 году чёткой закономерности различий не выявлено.

Плотность сложения почвы в слое до 40 см после обработки в 2002 году составляла 1,00-1,49 г/см3, в слоях 20-30 и 30-40 см плотность сложения была выше, даже при глубоком рыхлении. Так, по вспашке 30 см, перед посевом ячменя плотность составляла 1,44 г/см3 и была на уровне вариантов без рыхления этого слоя (чизелевание 20 см, вспашка 20 см). Это свидетельствует о быстром уплотнении почвы, особенно под влиянием выпадающих осадков (табл. 4.3.). Перед посевом 2002 года в слое 0-10 см плотность была не высокой от 1,00 до 1,29 г/см3, в слое 10-20 см она была выше и достигала 1,20-1,43 г/см3, в слое 20-30 см плотность была ещё более высокой - до 1,27-1,49 г/см3. На варианте глубокого чизелевания в слое 30 40 см плотность была на уровне слоя 20-30 см и составила 1,44 г/см. В фазу колошения плотность несколько снизилась под влиянием развития корневой системы и составляла от 1,05 до 1,40 г/см3. К уборке произошло некоторое уплотнение почвы - до 1,16-1,40 г/см.

ВЛИЯНИЕ ОБРАБОТКИ ПОЧВЫ НА АГРОФИЗИЧЕСКИЕ, АГРОХИМИЧЕСКИЕ СВОЙСТВА ПОЧВЫ И УРОЖАЙНОСТЬ ЗЕРНОВЫХ КУЛЬТУР

A.A. Белкин, Н.В. Беседин

Аннотация. В статье рассматривается влияние различных систем основной обработки почвы на объемную массу, продуктивную влагу, биологическую активность почвы и урожайность озимой пшеницы, ярового ячменя.

Ключевые слова", обработка, севооборот, объемная масса, влажность, биологическая активность, почва, урожайность.

В комплексе мероприятий по повышению культуры земледелия и увеличению урожаев сельскохозяйственных культур исключительно важное значение отводится обработке почвы. Она должна обеспечивать требуемые параметры водного, воздушного, пищевого и теплового режимов, а также противоэро-зионную устойчивость почвы, уничтожение сорняков для создания оптимальных условий роста, развития и формирования высокой продуктивности возделываемых культур .

Создание оптимальных условий для формирования высокого и устойчивого урожая зерновых культур в значительной степени определяется применяемой системой обработки почвы. Состояние растений в агрофитоценозе во многом зависит от того, какое механическое воздействие оказано на почву рабочими органами почвообрабатывающих орудий. Роль обработки почвы как фактора регуляции условий роста и развития зерновых культур следует оценивать в связи с другими факторами интенсификации земледелия.

Основная обработка почвы - очень мощное средство воздействия на ее свойства и, как следствие, на состояние агрофитоценозов. Обработкой можно вызвать проявление противоположных процессов, соотношение которых зависит от способа и периодичности обработки: оструктуривание -деагрегация, минерализация - гумификация, уплотнение-разуплот-нение, гомогенизация - гетерогенизация строения почвенного профиля, новообразование или разрушение почвы .

Цель обработки почвы под зерновые состоит в создании благоприятных условий для прорастания семян и развития растений путем обеспечения оптимального водно-воздушного, теплового и питательного режима почвы. Обработка должна обеспечить:

Оптимизацию плотности и структурного состояния;

Равномерное распределение в пахотном слое органических остатков предшествующих культур, удобрений и мелиорантов;

Устранение уплотнений в пахотном слое, плужной подошве и подпочве для беспрепятственного проникновения корней в пахотный и подпахотный слои;

Регулирование численности сорных растений, вредителей и возбудителей болезней;

Сохранение почвенной влаги;

Предотвращение эрозии и дефляции;

Выравнивание поверхности поля для качественного посева зерновых;

Энергосбережение и экономичность.

Проектирование конкретных технологий возделывания зерновых культур в условиях современной экономической и экологической ситуации в стране требует разработки технологических моделей основной обработки почвы в зависимости от конкретных почвенно-климатических условий и биологических особенностей зерновых культур. Перед технологами стоит задача разработки эффективных ресурсосберегающих систем обработки почвы применительно к разным уровням интенсификации земледелия, обеспечивающих достаточную и экономически оправданную продуктивность растений .

Приемы основной обработки почвы, которыми располагает современное земледелие, весьма разнообразны, а выполняемые ими функции иногда невозможно компенсировать с помощью других, даже экономически более выгодных приемов. В то же время в зависимости от комплекса сопровождающих условий интенсивность основной обработки может быть сокращена и сведена к агрономическим, экологически и экономически обоснованному минимуму .

Изменение агрофизических свойств почвы в положительном для зерновых культур направлении традиционно связывается с отвальной обработкой, теоретические основы которой в нашей стране заложили П.А. Костычев, А.Г. Дояренко, В.Р. Вильямс.

Система обработки почвы под зерновые культуры в севообороте должна строиться с учетом биологических особенностей зерновых культур, уровня засоренности полей, потенциальной опасности развития болезней и появления вредителей, типа и разновидности почвы, степени ее окультуренности, климатических и погодных условий. Комплекс перечисленных факторов определяет уровень эффективности систем земледелия и технологий выращивания зерновых культур. Экологические и экономические причины вызывают необходимость снижения интенсивности обработки почвы и уменьшения числа рабочих операций при использовании почвообрабатывающей техники. В зависимости от конкретных условий на первый план выходит решение той или иной задачи основной обработки.

Благоприятные условия для роста и развития зерновых культур складываются при оптимальных параметрах агрофизических свойств почвы, важнейшими из которых являются плотность и структурный состав. Необходимость и интенсивность рыхления пахотного слоя связаны с расхождениями между показателями равновесной и оптимальной для растений плотности почвы. Изучение реакции зерновых культур на физическое состояние почвы разных типов и разновидностей в полевых опытах позволило выявить интервалы оптимальных значений плотности почвы.

Плотность почвы зависит от гранулометрического состава, гумусированности, количества водопрочных агрегатов, влажности почвы и кардинальным образом регулируется с помощью вспашки. Равновесную плотность суглинистой почвы 1,35-1,50 г/см путем вспашки можно довести до 0,8-0,9 г/см3, после чего почва приобретает рыхлое состояние, особенно необходимое на ранних этапах развития зерновых культур.

В научной литературе преобладает мнение о слабой реакции зерновых культур на способ основной обработки почвы. Многочисленные исследования показывают, что эта группа культур формирует примерно одинаковую продуктивность по фону отвальной и безотвальной вспашки, особенно при размещении по пропашным предшественникам.

Другие авторы отмечают, что равновесная плотность почв в Центральном регионе устанавливается примерно с середины вегетации зерновых культур, вследствие чего в течение второй половины лета развитие этих культур протекает в неблагоприятных условиях. По одним сведениям, это не снижает урожай, по другим - урожай существенно снижается, либо наблюдается тенденция к снижению. Недостаточная длительность исследований не позволяет делать категорические выводы о безусловном равенстве традиционной и минимальной обработок в формировании урожая зерновых культур. Видовая и сортовая специфика реакции на обработку отмечается при выращивании яровых и озимых зерновых культур на дерново-подзолистых и серых лесных почвах. Поэтому следует выяснить этот вопрос в длительных полевых и модельных опытах. Мало также сведений

о влиянии на урожай таких способов обработки, как чизельная, отвальная разноглубинная со щелеванием .

Число и глубина механических обработок влияют также на структурное состояние пахотного горизонта, связанного со способностью к уплотнению и заплыванию. Если доля водопрочных агрегатов высокой агрономической ценности (0,25-10 мм) превышает 40%, то возможна минимализация, а на почвах тяжелых, заболоченных, оглеенных для выращивания зерновых культур следует использовать традиционную обработку и одновременно создавать предпосылки для использования ресурсосберегающих технологий.

Роль основной обработки почвы в регулировании водного режима заключается в переводе осадков в корнеобитаемый слой, уменьшении испарения с поверхности почвы, с целью создания и поддержания достаточных запасов продуктивной влаги, сокращении поверхностного стока на склоновых землях. Накопление влаги актуально не только для районов с недостаточным увлажнением, но и для Центрального региона Российской Федерации, поскольку майские засухи здесь повторяются регулярно, и тенденция усиливается в настоящее время. Изучение влияния обработок на водный режим - важное направление в поисках путей стабилизации урожайности зерновых культур.

Механические обработки являются сильными регуляторами режима органического вещества и биогенных элементов в почве. Следствием разных обработок становится неодинаковая степень минерализации гумусовых веществ, биологической активности почвы, дифференциации пахотного слоя. Для отдельных видов зерновых культур определены нижние границы и оптимальные параметры содержания гумуса, при которых возможно надежное выращивание данных культур. В то же время существуют противоположные позиции исследователей относительно непосредственного влияния гумусированности на урожай .

Неправильно выбранная система механической обработки нередко способствует снижению плодородия почвы и нерациональному использованию природного и антропогенного потенциала земледелия, а некачественно обработанная почва угнетающе действует на рост и развитие культурных растений и дает простор буйному развитию сорняков.

Влияние различных систем обработки почвы -отвальной (общепринятой) и безотвальной (ресурсосберегающей) - на свойства почвы и урожайность культур мы изучали на опытном поле кафедры земледелия, в полевом севообороте с чередованием

культур: однолетние травы, озимая пшеница, ячмень + клевер, клевер, озимая пшеница.

Почва опытного поля - темно-серая лесная, среднесуглинистого гранулометрического состава.

Наблюдения и исследования за почвой и растениями проводили по общепринятым методикам.

Цель наших исследований: изучить влияние обработки почвы на агрофизические, агрохимические свойства почвы и урожайность зерновых культур.

Результаты исследований показали, что плотность почвы в целом не выходила за границы оптимальной для культур и была обусловлена их агротехникой и в меньшей мере - технологией обработки почвы (таблица 1).

Плотность почвы при отвальной обработке почвы под озимую пшеницу (предшественник однолетние травы) и озимую пшеницу (предшественник кле-

вер) в верхнем слое почвы составила 1,2 - 1,22 г/см3, а после клевера - 1,18 г/см, в то время как при мелкой мульчирующей обработке она достигала 1,25 -1,3 г/см и 1,2 г/см соответственно. К концу вегетации растений плотность пахотного слоя увеличилась по всем системам обработки примерно одинаково и приходила к плотности естественного сложения.

Мелкая мульчирующая обработка почвы способствует более благоприятной влагообеспеченности семян и растений зерновых культур в первый период их роста, что особенно важно в засушливых условиях после посева.

Таблица 1 - Плотность сложения почвы, г/см3 (в среднем за вегетационный период, 2008 - 2009гг.)

Система обработки почвы Слой почвы, см Культуры

Озимая пшеница (предшественник однолетние травы) Озимая пшеница (предшественник клевер) Ячмень + клевер

Вспашка 0-10 1,2 1,22 1,18

10-20 1,3 1,35 1,3

20-30 1,32 1,37 1,33

Мелкая мульчирующая 0-10 1,25 1,3 1,2

10-20 1,37 1,4 1,35

20-30 1,4 1,43 1,38

Таблица 2 - Запасы продуктивной влаги (мм) за 2008 - 2009 гг.

Варианты опыта Количество влаги, мм

Начало вегетации (0-30 см) Конец вегетации (0-30 см) Начало вегетации (0-100 см) Конец вегетации (0-100 см)

Озимая пшеница (предшественник однолетние травы)

Вспашка 52,7 46,3 162,5 134,5

Мелкая мульчирующая 54,0 47,5 163,2 136,7

Озимая пшеница (предшественник клевер)

Вспашка 49,4 35,2 153,4 109,0

Мелкая мульчирующая 51,3 37,2 156,1 115,4

Ячмень + клевер

Вспашка 60,4 39,5 165,5 126,1

Мелкая мульчирующая 63,5 42,7 170,1 141,1

Таблица 3 - Интенсивность разложения льняного полотна под посевами зерновых культур в 2009 году, %

Культура Варианты Слой почвы, см

0-10 10-20 20-30 0-30

Озимая пшеница (предшественник однолетние травы) Вспашка 19,2 17,2 6,3 42,7

Мелкая мульчирующая 12,3 15,2 17,6 45,1

Озимая пшеница (предшественник клевер) Вспашка 30,8 15,0 18,0 63,8

Мелкая мульчирующая 25,1 24,3 18,9 68,3

Ячмень + клевер Вспашка 3,8 6,9 15,2 25,9

Мелкая мульчирующая 5,9 13,8 15,1 34,8

Установлено, что среднее содержание продуктивной влаги в слое почвы 0-30 см в посевах озимой пшеницы (предшественник однолетние травы) и озимой пшеницы (предшественник клевер) при ресурсосберегающей обработке почвы в начале вегетации было выше: - на 2,4 % и 3,7 %. Показатели количества почвенной влаги в слое 0-100 см имели ту же тенденцию.

В посевах ячменя определение содержания продуктивной влаги также выявило преимущество мелкой мульчирующей обработки почвы по сравнению со вспашкой.

Ко времени уборки урожая количество влаги в слое почвы 0-100 см снизилось в среднем в 10,6 раза в посевах ячменя + клевер, в 5,5 раза в посевах озимой пшеницы по предшественнику многолетние травы и 1,6 раза в посевах озимой пшеницы по предшественнику однолетние травы; в слое 0-30 см - в 7,5; 5,4; и 2,5 раза соответственно.

Степень разложения льняного полотна за вегетацию озимой пшеницы составила по ресурсосберегающей технологии 45,1 % и 68,3 % - озимой пшеницы, высеваемой после многолетних трав (клевер) против 42,7% и 63,8% соответственно по общепринятой технологии возделывания (таблица 3).

Разложение льняной ткани под посевом ячменя протекало менее интенсивно. Процент разложения льняной ткани составил по мелкой мульчирующей -34,8 %, по вспашке - 25,9 %.

Различные системы обработки существенно не влияли на агрохимические свойства почвы. Содержание подвижных форм фосфора находилось на уровне 135 - 188, калия - 98 - 130 мг/кг почвы. По кислотности почвы относятся к среднекислым.

Изменения численности сорняков в посевах изучаемых культур при различных способах обработки почвы показали, что наименьшая численность сорняков установлена при размещении озимой пшеницы по предшественнику, клевер первого года пользования с отвальной обработкой почвы - 41,0 шт./м, и 48,5 шт./м по мелкой мульчирующей. Наибольшая засоренность посевов наблюдается по предшественнику однолетние травы с внесением навоза, количество сорняков по вспашке составило 57,0 шт./м и по мелкой мульчирующей 82,0 шт./ м.

В посевах ячменя с подсевом клевера преобладали яровые ранние сорняки горчица полевая, горец вьюнковый, марь белая, редька полевая, фиалка полевая и др. Их численность составляла 26-37 % от всех видов сорняков в посевах. Доля многолетних сорняков в посевах была не значительной - 2,5 - 5%.

Влияние различных способов обработки почвы на урожайность зерновых культур можно проследить по данным таблицы 4.

Несмотря на высокие агрофизические показатели на мелкой мульчирующей обработке почвы, урожайность озимой пшеницы, высеваемой после клевера, ниже (на 2 ц/га) по сравнению со вспашкой. При возделывании озимой пшеницы по предшественнику однолетние травы ресурсосберегающая обработка

почвы обеспечила прибавку урожая 6 ц/га, ячменя с подсевом клевера - 3,3 ц/га.

Таблица 4 - Урожайность зерновых культур, 2009 год, ц/га

Система обра- ботки почвы Озимая пшеница (предшественник однолетние травы) Озимая пшеница (предшественник клевер) Ячмень с подсевом клевера

Вспашка 48,0 25,0 35,2

Мелкая мульчи- рующая 54,0 23,0 38,5

Таким образом, применение ресурсосберегающей обработки почв при возделывании зерновых культур способствует повышению биологической активности почвы, накоплению продуктивной влаги в пахотном слое, сохранению плодородия почвы, а также повышает урожайность зерновых культур в полевых севооборотах.

Список использованных источников

1 Баздырев, Г.И. Влияние ресурсосберегающих обработок почвы на засоренность посевов в почвозащитных севооборотах на склонах / Г.И. Баздырев // Сб. «Севооборот в современном земледелии». - М., 2004. -С. 180-185.