Режимы контактной точечной сварки. Режимы точечной сварки, параметры

Точечная сварка – метод, при котором соединение деталей внахлест производится в одной или нескольких точках. При подаче электротока происходит местный нагрев, в результате чего металл расплавляется и схватывается. В отличие от электродуговой или газовой сварки не требуется присадочный материал: плавятся не электроды, а сами детали. Не нужно и обволакивание инертным газом: сварочная ванна в достаточной мере локализована и защищена от попадания атмосферного кислорода. Сварщик работает без маски и рукавиц. Это позволяет лучше визуализировать и контролировать процесс. Точечная сварка обеспечивает высокую производительность (до 600 точек/мин) при низких затратах. Она широко используется в различных отраслях хозяйства: от приборостроения до самолетостроения, а также в бытовых целях. Без точечной сварки не обходится ни одна автомастерская.

Оборудование для точечной сварки

Работы выполняются на специальном сварочном аппарате, называемом споттер (от англ. Spot – точка). Споттеры бывают стационарные (для работы в цехах) и переносные. Установка работает от электросети 380 или 220 В и генерирует заряды тока в несколько тысяч ампер, что значительно больше, чем у инверторов и полуавтоматов. Ток подается на медный или карбоновый электрод, который прижимается к свариваемым поверхностям пневматикой или ручным рычагом. Возникает тепловое воздействие, длящееся несколько миллисекунд. Однако этого хватает для надежной стыковки поверхностей. Так как время воздействия минимально, то тепло не распространяется дальше по металлу, а точка сварки быстро остывает. Свариванию подлежат детали из рядовых сталей, оцинкованного железа, нержавейки, меди, алюминия. Толщина поверхностей может быть различна: от тончайших деталей для приборостроения до листов толщиной 20 мм.

Контактно-точечная сварка может проводиться одним электродом или двумя с разных сторон. Первый способ используется для сварки тонких поверхностей или в тех случаях, когда прижим с двух сторон осуществить невозможно. Для второго способа используют специальные клещи, зажимающие детали. Этот вариант обеспечивает более надежное крепление и чаще используется для работы с толстостенными заготовками.

По типу тока аппараты для точечной сварки подразделяются на:

  • работающие на переменном токе;
  • работающие на постоянном токе;
  • низкочастотные аппараты;
  • аппараты конденсаторного типа.

Выбор оборудования зависит от особенностей технологического процесса. Наиболее распространены аппараты переменного тока.

Вернуться к оглавлению

Электроды для точечной сварки

Электроды для точечной сварки отличаются от электродов для электродуговой сварки. Они не только обеспечивают подачу тока на свариваемые поверхности, но и выполняют прижимную функцию, а также задействованы в отводе тепла.

Высокая интенсивность рабочего процесса обуславливает необходимость использования материала, стойкого к механическим и химическим воздействиям. Более всего выдвинутым требованиям соответствует медь с добавлением хрома и цинка (0,7 и 0,4% соответственно).

Качество сварной точки во многом определяется диаметром электрода. Он должен быть минимум в 2 раз больше толщины стыкуемых деталей. Размеры стержней регламентируются ГОСТом и имеют от 10 до 40 мм в диаметре. Рекомендуемые размеры электродов представлены в таблице. (Изображение 1)

Для сварки рядовых сталей целесообразно использовать электроды с плоской рабочей поверхностью, для сварки высокоуглеродистых и легированных сталей, меди, алюминия – со сферической.

Электроды со сферическими наконечниками более стойкие: способны произвести больше точек до перезаточки.

К тому же они универсальны и подойдут для сварки любого металла, а вот использование плоских для сварки алюминия или магния приведет к образованию вмятин.

Точечная сварка в труднодоступных местах выполняется электродами изогнутой формы. Сварщик, который сталкивается с подобными условиями работы, всегда имеет набор различных фигурных электродов.

Для надежной передачи тока и обеспечения прижима электроды должны плотно соединяться с электрододержателем. Для этого их посадочным частям придают форму конуса.

Некоторые виды электродов имеют резьбовое соединение или крепятся по цилиндрической поверхности.

Вернуться к оглавлению

Параметры точечной сварки

Основными параметрами процесса являются сила тока, продолжительность импульса, усилие сжатия.

От силы сварочного тока зависит количество выделяемого тепла, скорость нагрева, величина сварного ядра.

Наряду с силой тока на количество тепла и размеры ядра влияет продолжительность импульса. Однако при достижении определенного момента наступает состояние равновесия, когда все тепло отводится от зоны сварки и уже не влияет на расплавление металла и размер ядра. Поэтому увеличение продолжительности подачи тока сверх этого нецелесообразно.

Усилие сжатия влияет на пластическую деформацию свариваемых поверхностей, перераспределение по ним тепла, кристаллизацию ядра. Высокое усилие сжатия снижает сопротивление электрического тока, идущего от электрода к свариваемым деталям и в обратном направлении. Таким образом, возрастает сила тока, ускоряется процесс расплавления. Соединение, выполненное с высоким усилием сжатия, отличается высокой прочностью. При больших токовых нагрузках сжатие препятствует выплескам расплавленного металла. С целью снятия напряжения и увеличения плотности ядра в некоторых случаях производится дополнительное кратковременное повышение усилия сжатия после отключения тока.

Выделяют мягкий и жесткий . При мягком режиме сила тока меньше (плотность тока составляет 70-160 А/мм²), а продолжительность импульса может достигать нескольких секунд. Такая сварка применяется для соединения низкоуглеродистых сталей и более распространена в домашних условиях, когда работы проводятся на маломощных аппаратах. При жестком режиме продолжительность мощного импульса (160-300 А/мм²) составляет от 0,08 до 0,5 секунды. Деталям обеспечивают максимально возможное сжатие. Быстрый нагрев и быстрое охлаждение позволяют сохранить сварному ядру антикоррозийную стойкость. Жесткий режим используют при работе с медью, алюминием, высоколегированными сталями.

Выбор оптимальных параметров требует учета многих факторов и проведения испытаний после расчетов. Если же выполнение пробных работ невозможно или нецелесообразно (например, при разовой сварке в домашних условиях), то следует придерживаться режимов, изложенных в справочниках. Рекомендованные параметры силы тока, продолжительности импульса и сжатия для сварки рядовых сталей приведены в таблице. (Изображение 2)

Вернуться к оглавлению

Возможные дефекты и их причины

Качественно выполненная точечная обеспечивает надежное соединение, срок службы которого, как правило, превышает срок службы самого изделия. Однако нарушение технологии может привести к дефектам, которые можно разделить на 3 основные группы:

  • недостаточные размеры сварного ядра и отклонение его положения относительно стыка деталей;
  • механические повреждения: трещины, вмятины, раковины;
  • нарушение механических и антикоррозийных свойств металла в зоне, прилегающей к сварной точке.

Рассмотрим конкретные виды дефектов и причины их возникновения:

  1. Непровар может быть вызван недостаточной величиной силы тока, чрезмерным сжатием, изношенностью электрода.
  2. Наружные трещины возникают при слишком большом токе, недостаточном сжатии, загрязненности поверхностей.
  3. Разрывы у кромок обусловлены близким расположением к ним ядра.
  4. Вмятины от электродов возникают при их слишком малой рабочей поверхности, неправильной установке, чрезмерном сжатии, слишком высоком токе и продолжительном импульсе.
  5. Выплеск расплавленного металла и заполнение им пространства между деталями (внутренний выплеск) происходит из-за недостаточного сжатия, образования в ядре воздушной раковины, несоосно установленных электродах.
  6. Наружный выплеск расплавленного металла на поверхность деталей может быть вызван недостаточным сжатием, слишком большими режимами тока и времени, загрязненностью поверхностей и перекосом электродов. Последние два фактора оказывают негативное влияние на равномерность распределения тока и плавление металла.
  7. Внутренние трещины и раковины возникают из-за чрезмерных режимов тока и времени, недостаточного или запаздывающего проковочного сжатия, загрязненности поверхностей. Усадочные раковины появляются в момент охлаждения ядра. Для их предотвращения и используют проковочное сжатие после прекращения подачи тока.
  8. Причиной неправильной формы ядра или его смещения является перекос или несоосность электродов, загрязненность поверхности деталей.
  9. Прожог является следствием загрязненности поверхностей или недостаточного сжатия. Во избежание этого дефекта ток необходимо подавать только после того, как сжатие обеспечено полностью.


Точечная сварка является разновидностью контактной сварки. При этом способе, нагрев металла до температуры его плавления осуществляется теплом, которое образуется при прохождении большого электрического тока от одной детали к другой через место их контакта. Одновременно с пропусканием тока и некоторое время спустя после него производится сжатие деталей, в результате чего происходит взаимное проникновение и сплавление нагретых участков металла.

Особенностями контактной точечной сварки являются: малое время сварки (от 0,1 до нескольких секунд), большой сварочный ток (более 1000А), малое напряжение в сварочной цепи (1-10В, обычно 2-3В), значительное усилие сжимающее место сварки (от нескольких десятков до сотен кг), небольшая зона расплавления.

Точечную сварку чаще всего применяют для соединения листовых заготовок внахлестку, реже - для сварки стержневых материалов. Диапазон толщин, свариваемых ею, составляет от нескольких микрометров до 2-3 см, однако чаще всего толщина свариваемого металла варьируется от десятых долей до 5-6 мм.

Кроме точечной, существуют и другие виды контактной сварки (стыковая, шовная и пр.), однако точечная сварка является наиболее распространенной. Она применятся в автомобилестроении, строительстве, радиоэлектронике, авиастроении и многих других отраслях. При строительстве современных лайнеров, в частности, производится несколько миллионов сварных точек.

Заслуженная популярность

Большая востребованность точечной сварки обусловлена целым рядом достоинств, которыми она обладает. В их числе: отсутствие необходимости в сварочных материалах (электродах, присадочных материалах, флюсах и пр.), незначительные остаточные деформации, простота и удобство работы со сварочными аппаратами, аккуратность соединения (практическое отсутствие сварного шва), экологичность, экономичность, подверженность легкой механизации и автоматизации, высокая производительность. Автоматы точечной сварки способны выполнять до нескольких сотен сварочных циклов (сварных точек) в минуту.

К недостаткам можно отнести отсутствие герметичности шва и концентрацию напряжений в точке сварки. Причем последние могут быть значительно уменьшены или вообще устранены особыми технологическими приемами.

Последовательность процессов при контактной точечной сварке

Весь процесс точечной сварки можно условно разделить на 3 этапа.
  • Сжатие деталей, вызывающее пластическую деформацию микронеровностей в цепочке электрод-деталь-деталь-электрод.
  • Включение импульса электрического тока, приводящего к нагреву металла, его расплавлению в зоне соединения и образованию жидкого ядра. По мере прохождения тока ядро увеличивается по высоте и диаметру до максимальных размеров. Происходит образование связей в жидкой фазе металла. При этом продолжается пластическая осадка контактной зоны до окончательного размера. Сжатие деталей обеспечивает образование уплотняющего пояса вокруг расплавленного ядра, который препятствует выплеску металла из зоны сварки.
  • Выключение тока, охлаждение и кристаллизация металла, заканчивающаяся образованием литого ядра. При охлаждении объем металла уменьшается, и возникают остаточные напряжения. Последние являются нежелательным явлением, с которым борются различными способами. Усилие, сжимающее электроды, снимается с некоторой задержкой после отключения тока. Это обеспечивает необходимые условия для лучшей кристаллизации металла. В некоторых случаях в заключительной стадии контактной точечной сварки рекомендуется даже увеличивать усилие прижима. Оно обеспечивает проковывание металла, устраняющее неоднородности шва и снимающее напряжения.

При следующем цикле все повторяется снова.

Основные параметры контактной точечной сварки

К основным параметрам контактной точечной сварки относятся: сила сварочного тока (I СВ), длительность его импульса (t СВ), усилие сжатия электродов (F СВ), размеры и форма рабочих поверхностей электродов (R - при сферической, d Э - при плоской форме). Для лучшей наглядности процесса эти параметры представляются в виде циклограммы, отражающей их изменение во времени.

Различают жесткий и мягкий режимы сварки. Первый характеризуется большим током, малой продолжительностью токового импульса (0,08-0,5 секунд в зависимости от толщины металла) и большой силой сжатия электродов. Его применяют для сварки медных и алюминиевых сплавов, обладающих большой теплопроводностью, а также высоколегированных сталей для сохранения их коррозионной стойкости.

При мягком режиме производится более плавный нагрев заготовок относительно небольшим током. Продолжительность сварочного импульса составляет от десятых долей до нескольких секунд. Мягкие режимы показаны для сталей, склонных к закалке. В основном именно мягкие режимы используются для контактной точечной сварки в домашних условиях, поскольку мощность аппаратов в этом случае может быть ниже, чем при жесткой сварке.

Размеры и форма электродов . С помощью электродов осуществляется непосредственный контакт сварочного аппарата с деталями, подвергаемыми сварке. Они не только подводят ток в зону сварки, но и передают сжимающее усилие и отводят тепло. Форма, размеры и материал электродов являются важнейшими параметрами аппаратов для точечной сварки.

В зависимости от их формы электроды подразделяются на прямые и фигурные. Наиболее распространены первые, они применяются для сварки деталей, допускающих свободный доступ электродов в свариваемую зону. Их размеры стандартизованы ГОСТом 14111-90, который устанавливает такие диаметры электродных стержней: 10, 13, 16, 20, 25, 32 и 40 мм.

По форме рабочей поверхности существуют электроды с плоскими и сферическими наконечниками, характеризуемыми соответственно значениями диаметра (d) и радиуса (R). От величины d и R зависит площадь контакта электрода с деталью, влияющая на плотность тока, давление и величину ядра. Электроды со сферической поверхностью имеют большую стойкость (способны сделать больше точек до переточки) и менее чувствительны к перекосам при установке, чем электроды с плоской поверхностью. Поэтому со сферической поверхностью рекомендуется изготовлять электроды, используемые в клещах, а также фигурные электроды, работающие с большими прогибами. При сварке легких сплавов (например, алюминия, магния) применяют только электроды со сферической поверхностью. Использование для этой цели электродов с плоской поверхностью приводит к чрезмерным вмятинам и подрезам на поверхности точек и повышенным зазорам между деталями после сварки. Размеры рабочей поверхности электродов выбирают в зависимости от толщины свариваемых металлов. Следует отметить, что электроды со сферической поверхностью могут быть использованы практически во всех случаях точечной сварки, электроды же с плоской поверхностью очень часто неприменимы.


* - в новом ГОСТе вместо диаметра 12 мм, введено 10 и 13 мм.

Посадочные части электродов (места соединяемые с электродержателем) должны обеспечивать надежную передачу электрического импульса и усилие прижима. Часто они выполняются в виде конуса, хотя существуют и другие виды соединений - по цилиндрической поверхности или резьбе.

Очень важное значение имеет материал электродов, определяющий их электрическое сопротивление, теплопроводность, термостойкость и механическую прочность при высоких температурах. В процессе работы электроды нагреваются до больших температур. Термоциклический режим работы, совместно с механической переменной нагрузкой, вызывает повышенный износ рабочих частей электродов, результатом чего становится ухудшение качества соединений. Чтобы электроды были в состоянии противостоять тяжелым условиям работы, их делают из специальных медных сплавов, обладающих жаропрочностью и высокой электро- и теплопроводностью. Чистая медь также способна работать в качестве электродов, однако она обладает низкой стойкостью и требует частых переточек рабочей части.

Сила сварочного тока . Сила сварочного тока (I СВ) - один из основных параметров точечной сварки. От нее зависит не только количество тепла, выделяющегося в зоне сварки, но и градиент его увеличения по времени, т.е. скорость нагрева. Напрямую зависят от I СВ и размеры сварного ядра (d, h и h 1), увеличивающиеся пропорционально увеличению I СВ.

Необходимо отметить, что ток, который протекает через зону сварки (I СВ), и ток, протекающий во вторичном контуре сварочной машины (I 2), различаются между собой - и тем больше, чем меньше расстояние между сварными точками. Причиной этого является ток шунтирования (I ш), протекающий вне зоны сварки - в том числе и через ранее выполненные точки. Таким образом, ток в сварочной цепи аппарата должен быть больше сварочного тока на величину тока шунтирования:

I 2 = I СВ + I ш

Для определения силы сварочного тока можно пользоваться разными формулами, которые содержат различные эмпирические коэффициенты, полученные опытным путем. В случаях, когда точное определение сварочного тока не требуется (что и бывает чаще всего), его значение принимают по таблицам, составленным для разных режимов сварки и различных материалов.

Увеличение времени сварки позволяет сваривать токами намного меньшими, чем приведенные в таблице для промышленных аппаратов.

Время сварки . Под временем сварки (t СВ) понимают продолжительность импульса тока при выполнении одной сварной точки. Вместе с силой тока, оно определяет количество теплоты, которое выделяется в зоне соединения при прохождении через нее электрического тока.

При увеличении t СВ повышается проплавление деталей и растут размеры ядра расплавленного металла (d, h и h 1). Одновременно с этим увеличивается и теплоотвод из зоны плавления, разогреваются детали и электроды, происходит рассеивание тепла в атмосферу. При достижении определенного времени может наступить состояние равновесия, при котором вся подводимая энергия отводится из зоны сварки, не увеличивая проплавление деталей и размер ядра. Поэтому увеличение t СВ целесообразно только до определенного момента.

При точном расчете продолжительности сварочного импульса должны учитываться многие факторы - толщина деталей и размер сварной точки, температура плавления свариваемого металла, его предел текучести, коэффициент аккумуляции тепла и пр. Есть сложные формулы с эмпирическими зависимостями, по которым при необходимости осуществляют расчет.

На практике чаще всего время сварки принимают по таблицам, корректируя при необходимости принятые значения в ту или иную сторону в зависимости от полученных результатов.

Усилие сжатия . Усилие сжатия (F СВ) оказывает влияние на многие процессы контактной точечной сварки: на пластические деформации, происходящие в соединении, на выделение и перераспределение тепла, на охлаждение металла и его кристаллизацию в ядре. С увеличением F СВ увеличивается деформация металла в зоне сварки, уменьшается плотность тока, снижается и стабилизируется электрическое сопротивление на участке электрод-детали-электрод. При условии сохранения размеров ядра неизменными, прочность сварных точек с ростом усилия сжатия возрастает.

При сварке на жестких режимах применяют более высокие значения F СВ, чем при мягкой сварке. Это связано с тем, что при увеличении жесткости возрастает мощность источников тока и проплавление деталей, что может приводить к образованию выплесков расплавленного металла. Большое усилие сжатия как раз и призвано воспрепятствовать этому.

Как уже отмечалось, для проковки сварной точки с целью снятия напряжений и повышения плотности ядра, технология контактной точечной сварки в некоторых случаях предусматривает кратковременное увеличение силы сжатия после отключения электрического импульса. Циклограмма в этом случае выглядит следующим образом.

При изготовлении простейших аппаратов контактной сварки для домашнего пользования нет большого резона заниматься точными расчетами параметров. Ориентировочные значения диаметра электродов, сварочного тока, времени сварки и усилия сжатия можно взять из таблиц, имеющихся во многих источниках. Нужно только понимать, что данные в таблицах являются несколько завышенными (или заниженными, если иметь в виду время сварки) по сравнению с теми, которые подойдут для домашних аппаратов, где обычно используются мягкие режимы.

Подготовка деталей к сварке

Поверхность деталей в зоне контакта деталей между собой и в месте контакта с электродами зачищают от окислов и других загрязнений. При плохой зачистке возрастают потери мощности, ухудшается качество соединений и увеличивается износ электродов. В технологии контактной точечной сварки, для зачистки поверхности используют пескоструйную обработку, наждачные круги и металлические щетки, а также травление в специальных растворах.

Высокие требования предъявляются к качеству поверхности деталей из алюминиевых и магниевых сплавов. Целью подготовки поверхности под сварку является удаление без повреждения металла относительно толстой пленки окислов с высоким и неравномерным электрическим сопротивлением.

Оборудование для точечной сварки

Различия между существующими видами аппаратов для точечной сварки определяются в основном родом сварочного тока и формой его импульса, которые производятся их силовыми электрическими контурами. По этим параметрам оборудование контактной точечной сварки подразделяется на следующие виды:
  • машины для сварки переменным током;
  • аппараты низкочастотной точечной сварки;
  • машины конденсаторного типа;
  • машины сварки постоянным током.

Каждый из этих типов машин имеет свои преимущества и недостатки в технологическом, техническом и экономическом аспектах. Наибольшее распространение получили машины для сварки переменным током.

Машины контактной точечной сварки переменного тока . Принципиальная схема машин для точечной сварки переменным током представлена на рисунке ниже.

Напряжение, при котором осуществляется сварка, формируется из напряжения сети (220/380В) с помощью сварочного трансформатора (ТС). Тиристорный модуль (КТ) обеспечивает подключение первичной обмотки трансформатора к питающему напряжению на необходимое время для формирования сварочного импульса. С помощью модуля можно не только управлять продолжительностью времени сварки, но и осуществлять регулирование формы подаваемого импульса за счет изменения угла открытия тиристоров.

Если первичную обмотку выполнить не из одной, а нескольких обмоток, то, подключая их в различном сочетании друг с другом, можно менять коэффициент трансформации, получая различные значения выходного напряжения и сварочного тока на вторичной обмотке.

Кроме силового трансформатора и тиристорного модуля, машины контактной точечной сварки переменного тока имеют набор управляющего оборудования - источник питания для системы управления (понижающий трансформатор), реле, логические контроллеры, панели управления и пр.

Конденсаторная сварка . Сущность конденсаторной сварки заключается в том, что сначала электрическая энергия относительно медленно накапливается в конденсаторе при его зарядке, а затем очень быстро расходуется, генерируя токовый импульс большой величины. Это позволяет производить сварку, потребляя из сети меньшую мощность по сравнению с обычными аппаратами для точечной сварки.

Кроме этого основного преимущества, конденсаторная сварка имеет и другие. При ней происходит постоянное контролируемое расходование энергии (той, которая накопилась в конденсаторе) на одно сварное соединение, что обеспечивает стабильность результата.

Сварка происходит за очень короткое время (сотые и даже тысячные доли секунды). Это дает концентрированное выделение тепла и минимизирует зону термического влияния. Последнее достоинство позволяет использовать её для сварки металлов с высокой электро- и теплопроводностью (медных и алюминиевых сплавов, серебра и др.), а также материалов с резко различающимися теплофизическими свойствами.

Жесткая конденсаторная микросварка используется в радиоэлектронной промышленности.

Количество энергии, накопленное в конденсаторах, можно рассчитать по формуле:

W = C U 2 /2

где С - емкость конденсатора, Ф; W - энергия, Вт; U - зарядное напряжение, В. Изменяя величину сопротивления в зарядной цепи, регулируют время зарядки, зарядный ток и потребляемую из сети мощность.

Дефекты контактной точечной сварки

При качественном исполнении, точечная сварка обладает высокой прочностью и способна обеспечить эксплуатацию изделия в течение длительного срока службы. При разрушениях конструкций, соединенных многоточечной многорядной точечной сваркой, разрушение происходит, как правило, по основному металлу, а не по сварным точкам.

Качество сварки зависит от приобретенного опыта, который сводится в основном к выдерживанию необходимой продолжительности токового импульса на основании визуального наблюдения (по цвету) за сварной точкой.

Правильно выполненная сварная точка расположена по центру стыка, имеет оптимальный размер литого ядра, не содержит пор и включений, не имеет наружных и внутренних выплесков и трещин, не создает больших концентраций напряжения. При приложении усилия на разрыв, разрушение конструкции происходит не по литому ядру, а по основному металлу.

Дефекты точечной сварки подразделяются на три типа:

  • отклонения размеров литой зоны от оптимальных, смещение ядра относительно стыка деталей или положения электродов;
  • нарушение сплошности металла в зоне соединения;
  • изменение свойств (механических, антикоррозионных и др.) металла сварной точки или прилегающих к ней областей.

Наиболее опасным дефектом считается отсутствие литой зоны (непровар в виде "склейки"), при котором изделие может выдерживать нагрузку при невысокой статической нагрузке, но разрушается при действии переменной нагрузки и колебаниях температуры.

Прочность соединения оказывается сниженной и при больших вмятинах от электродов, разрывах и трещинах кромки нахлестки, выплеске металла. В результате выхода литой зоны на поверхность, снижаются антикоррозионные свойства изделий (если они были).

Непровар полный или частичный, недостаточные размеры литого ядра . Возможные причины: мал сварочный ток, слишком велико усилие сжатия, изношена рабочая поверхность электродов. Недостаточность сварочного тока может вызываться не только его малым значением во вторичном контуре машины, но и касанием электрода вертикальных стенок профиля или слишком близким расстоянием между сварными точками, приводящим к большому шунтирующему току.

Дефект обнаруживается внешним осмотром, приподниманием кромки деталей пробойником, ультразвуковыми и радиационными приборами для контроля качества сварки.

Наружные трещины . Причины: слишком большой сварочный ток, недостаточная сила сжатия, отсутствие усилия проковки, загрязненная поверхность деталей и/или электродов, приводящая к увеличению контактного сопротивления деталей и нарушению температурного режима сварки.

Дефект можно обнаружить невооруженным глазом или с помощью лупы. Эффективна капиллярная диагностика.

Разрывы у кромок нахлестки . Причина этого дефекта обычно одна - сварная точка расположена слишком близко от края детали (недостаточна нахлестка).

Обнаруживается внешним осмотром - через лупу или невооруженным глазом.

Глубокие вмятины от электрода . Возможные причины: слишком малый размер (диаметр или радиус) рабочей части электрода, чрезмерно большое ковочное усилие, неправильно установленные электроды, слишком большие размеры литой зоны. Последнее может являться следствием превышения сварочного тока или длительности импульса.

Внутренний выплеск (выход расплавленного металла в зазор между деталями) . Причины: превышены допустимые значения тока или длительности сварочного импульса - образовалась слишком большая зона расплавленного металла. Мало усилие сжатия - не создался надежный уплотняющий пояс вокруг ядра или образовалась воздушная раковина в ядре, вызвавшая вытекание расплавленного металла в зазор. Неправильно (несоосно или с перекосом) установлены электроды.

Определяется методами ультразвукового или рентгенографического контроля или внешним осмотром (из-за выплеска может образоваться зазор между деталями).

Наружный выплеск (выход металла на поверхность детали) . Возможные причины: включение токового импульса при несжатых электродах, слишком большое значение сварочного тока или продолжительности импульса, недостаточное усилие сжатия, перекос электродов относительно деталей, загрязнение поверхности металла. Две последние причины приводят к неравномерной плотности тока и расплавлению поверхности детали.

Определяется внешним осмотром.

Внутренние трещины и раковины . Причины: слишком велики ток или продолжительность импульса. Загрязнена поверхность электродов или деталей. Мала сила сжатия. Отсутствует, опаздывает или недостаточно ковочное усилие.

Усадочные раковины могут возникать во время охлаждения и кристаллизации металла. Чтобы воспрепятствовать их возникновению, необходимо повышать силу сжатия и применять проковывающее сжатие в момент охлаждения ядра. Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Смещение литого ядра или его неправильная форма . Возможные причины: неправильно установлены электроды, не очищена поверхность деталей.

Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Прожог . Причины: наличие зазора в собранных деталях, загрязнение поверхности деталей или электродов, отсутствие или малое усилие сжатия электродов во время токового импульса. Во избежание прожогов ток должен подаваться только после приложения полного усилия сжатия. Определяется внешним осмотром.

Исправление дефектов . Способ исправления дефектов зависит от их характера. Самым простым является повторная точечная или иная сварка. Дефектное место рекомендуется вырезать или высверлить.

При невозможности сварки (из-за нежелательности или недопустимости нагрева детали), вместо дефектной сварной точки можно поставить заклепку, высверлив место сварки. Применяются и другие способы исправления - зачистка поверхности в случае наружных выплесков, термическая обработка для снятия напряжений, правка и проковка при деформации всего изделия.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Основные сведения об изделии и технические данные.
Регуляторы контактной сварки РКС-502 и РКС-801, в дальнейшем именуемые "регуляторы", предназначены для комплектации контактных электросварочных машин.
Регуляторы обеспечивают:

Управление последовательностью действий однофазных машин точечной сварки, имеющих контактор и клапан (для регулятора РКС-801 - два клапана) постоянного тока;

Регулирование длительности позиций сварочного цикла с цифровым отсчетом;

Управление тиристорным контактором и регулирование величины сварочного тока;

Автоматическую настройку на коэффициент мощности cosφ с изменением полярности включения первой полуволны сварочного тока;

Стабилизацию действующего значения сварочного тока при колебаниях напряжения питающей сети.

Управление регулятором проводится путем замыкания и размыкания контактов педали сварочной машины.

Принцип работы регулятора

Рассмотрим работу регуляторов в режиме "Одиночная сварка".

При подаче на регулятор напряжения питания зажигается индикатор " " на передней панели. Счетчики и триггеры блоков цикла и счета устанавливаются в ноль с помощью цепочки на транзисторах VT7, VT8 на блоке счета. С помощью схемы собранной на элементах VT1, VT2, D2, VT3, VT4, VT5, VT6, D3, вырабатываются и формируются тактовые импульсы.

При замыкании контактов педали сварочной машины инвертор на VT9 опрокидывается и сигнал подается на блок цикла на D10.3, запускается триггер D3.8 "Предварительное сжатие". Одновременно, на блоке счета счетчик D6 вырабатывает импульсы счета для позиций "XI", a D8 для "XI0". При совпадении количества импульсов на дешифраторах D7 (для "XI") и D9 (для "Х10") с количеством периодов, установленных на переключателе позиций "Предварительное сжатие", в блок цикла поступает сигнал, запускающий счет позиции "Сжатие". Аналогичным образом работают остальные режимы схемы.

При постоянно замкнутых контактах педали автоматически повторяется сварочный цикл, если переключатель "Режим работы" регулятора установлен в положении "Серия сварок", и дает только один цикл в положении "Одиночная сварка". В режиме "Серия сварок" выдержка "Предварительное сжатие" исключается после прохождения первого сварочного цикла. При размыкании педали после прохождения выдержки "Сжатие" обеспечивается прохождение полного сварочного цикла. В случае размыкания педали на выдержке "Сжатие" сварочный цикл прекращается, сварочная машина возвращается в состояние ожидания.

Индикация прохождения сварочного цикла осуществляется с помощью индикаторов, установленных на лицевой панели.

Для регулятора РКС-502 на блоке счета имеется схема на элементах D5.1, D4.3, D3.6, которая с помощью переключателя "Х4" позволяет увеличить длительность одновременно всех позиций цикла в 4 раза. (Для регулятора РКС-801 элементы D1.2, D4.1, D4.2, переключатель "Х2" и увеличение длительности позиций в 2 раза соответственно)

Для работы регулятора по циклу длительность каждой выдержки должна быть не менее "01" (1 периода). Длительность "00" является запрещенной.

Схема блока стабилизаторов является типовой, ее принцип работы приведен в справочниках и специального описания не требует.

Блок регулировки тока обеспечивает формирование импульсов управления тиристорным контактором, автоматическую регулировку cosφ и стабилизацию сварочного тока. Сигнал с первичной цепи силового трансформатора контактной машины через промежуточный трансформатор попадает на диодный мост VD17-VD20, формируется на элементах VT12, D4.6, D5.4, Dl.l, D2.1, сдвигается по фазе на необходимую величину на элементах С6, VT9, VT10 и импульсы управления с элементов D7, VT11 подаются на блок усилителей.

Регулировка нижних пределов действующего значения сварочного тока производится схемой на элементе D8 у изготовителя и дополнительной подстройки не требует. Стабилизация сварочного тока осуществляется при установке переключателя в положение "Включено" на лицевой панели.

Блок усилителей предназначен для усиления импульсов управления тиристорными контакторами (схема на VT1, VT2) и включения клапана (VT3) для РКС-502 или клапанов (VT3, VT6) (для РКС-801).

В блоке предусмотрена электронная защита цепей питания клапана от перегрузок по току (VT7, VT8, VT9, VT10). Индикация срабатывания защиты производится с помощью индикатора на лицевой панели.

Элементы D1, D3, D4, D5 (дополнительно D2 для РКС-801) служат для управления регулятором с помощью внешних сигналов. Схема подключения цепей внешнего управления регуляторами приведена в приложении 11.


Переключателем "Компенсация" можно отключить стабилизацию, что увеличивает величину тока на 15%.

Сварочный ток можно отключить переключателем "Ток включен". Такой режим необходим при наладке машины.

Регулятор РКС-801 выполняет также следующие дополнительные функции:

Регулировку величины сварочного тока для позиций "Сварка 1" и "Сварка 2", задаваемой переключателями "Нагрев 1" и "Нагрев 2" соответственно. Нулевое положение переключателя соответствует минимальной величине сварочного тока (50%), положение "9" - максимальное;

В режиме импульсной сварки позиции "Охлаждение" и "Сварка 1" могут отрабатываться до 9 раз в одном цикле. Количество импульсов задается переключателем "Число импульсов";

Первый импульс сварочного тока позиции "Сварка 1" может быть промодулирован. Суть модуляции состоит в том, что первая полуволна сварочного тока имеет значение минимальной величины и за десять периодов нарастает до максимального значения (которое должно быть установлено переключателем "Нагрев 1"). При установке переключателя "Нарастание" в положение "9", время модуляции наибольшее, и составляет 0,2 сек. При установке переключателя в положение "0" первый импульс сварочного тока импульс не модулируется;

Клапан 2, управляемый регулятором, осуществляет дополнительное обжатие заготовки на позициях "Сжатие" ("Повышенное усилие 12) и на позициях "Проковка 1", "Сварка 2", "Проковка 2" ("Повышенное усилие 2"). Повышенные усилия могут быть отключены соответствующими переключателями. Сигнализация работы клапана 2 на повышенном усилии 2 осуществляется индикатором. Срабатывание клапана 2 на повышенном усилии 2 можно задержать на 1...9 периодов с момента окончания позиции "Сварка 1" при помощи соответствующего переключателя (длительность позиции "Проковка 1" должна быть не меньше значения задержки).

Устанавливается следующими основными параметрами: силой или плотностью тока, временем нагрева, давлением, диаметром рабочей части электрода. Кроме того, часто задается время предварительного сжатия электродов t сж, время проковки t np форма рабочей части электрода и материал для его изготовления. Режимы специальных видов точечной сварки имеют еще некоторые дополнительные параметры.

Точечная сварка малоуглеродистой стали, как и , может производиться в очень широком диапазоне изменения параметров, однако каждому варианту режимов соответствует свое определенное соотношение параметров между собой.

Мягкие режимы характеризуются малой силой тока и большим временем нагрева, для жестких режимов сила тока большая, время нагрева - с варианта режима должен производиться с учетом конкретных условий производства и требований к сварочному соединению.

Сваривание точечной сваркой

Особенности названных вариантов точечной сварки

  1. Мягкие режимы

Сварка на мягких режимах сопровождается образованием широкой зоны разогрева, что облегчает деформирование металла и позволяет ограничиться не очень высокими требованиями к точности правки заготовок, как при жестких режимах.

  • Так как время нагрева повышено, степень влияния теплоты от быстро исчезающего контактного сопротивления на общий нагрев здесь несколько снижается.
  • Поэтому могут быть снижены н требования к тщательности подготовки поверхности заготовок.
  • Мощность электрическая я механическая при сварке на мягких режимах требуется более умеренная, чем при сварке на жестких режимах.

Точ. сварка

  1. Жесткие режимы

Жесткие режимы обеспечивают более высокую производительность и меньший расход энергии. Ввиду того, что поверхность деталей под электродами при жестких режимах нагревается сравнительно меньше, электроды нагреваются слабее в, несмотря на рост давления, расход их снижается. Заметно уменьшается глубин2 вмятая в месте сварки и коробление изделия. В целом жесткие режимы целесообразны, прежде всего, в массовом производстве, где выигрыш в производительности и расходе энергии полностью окупит дополнительные расходы, связанные с приобретением, эксплуатацией и питанием более мощного оборудования.

Сила и плотность тока.

С увеличением толщины свариваемых листов сила тока должна повышаться. Для сварки низкоуглеродистых сталей средней толщины на серийных машинах ориентировочный выбор силы тока l может осуществляться по следующему соотношению:

l =6500qa ,

Где q толщина свариваемых листов в мм.

При сварке листов различной толщины выбор параметро производится во условию достаточности нагрева и деформации более тонкого листа. Потому а приведенном соотношении и в последующих величина q отнесена к более тонкому листу.

Плотность тока I для жестких режимов выбирается в пределах 120 — 360 д/Лм*, для мягких 80- 160 а мм2.

С увеличением толщины листов плотность то/? снижается. Когда металл свариваемых деталей обладает повышенной тепло- и электропроводностью, плотность тока должна увеличиваться. Так, при сварке алюминия или его сплавов плотность тока иногда достигает 1000 а/мм2 и выше. Как упоминалось ранее, плотность тока должна выбираться большей, когда по каким-нибудь соображениям давление принимается повышенным.

Контактная точечная сварка

Время нагрева

Как и сила тока, время нагрева (tcs) возрастает с увеличением толщины деталей. Ориентировочно для сварки малоуглеродистой стали на жестких режимах время нагрева может выбираться по соотношению

tce - (0,1 -f-0.2) q сек.,

где q - толщина более тонкого листа в мм.

Для сварки листов толщиной до 3 мм на мягких режимах подбор времени нагрева может производиться пo соотношению.

I = (0.8×1) q сек.

Слишком длительный нагрев может вызвать перегрев металла в зоне сварки.

Для сварки металлов с высокой теплопроводностью время сварки принимается малым (при большой силе тока), при сварке закаливающихся сталей, наоборот, во избежание образования закалочных трещин при быстром охлаждения время нагрева часто приходится увеличивать (при соответствующем снижении тока).

Ход точечной сварки

Давление

Выбор давления (P) производится в зависимости от толщины, состояния и материала заготовок, а также от характера принятого режима нагрева.

Для сварки малоуглеродистой стали давление в зависимости от толщины выбирается do формуле

P=(60×200)q кг.

где q -толщина в мм.

Удельное давление имеет предел Зх10 кг/мм2.

Мягкую горячекатаную сталь возможно спаривать при меньших давлениях. Холоднокатаная сталь, получившую повышенную твердость наклепа, требует некоторого повышения давления (на 20-30%). Когда заготовки плохо выправлены и имеют коробления, то, прежде чем плотно сдавить листы на участке сиамки, приходится произвести правку под электродами. Общее требуемое усилие а этом случае должно быть увеличено, особенно при больших толщинах. Так, для листов толщиной 3-6 мм только это дополнительное усилие составляет 100-400 ке. По этой же причине усилие должно возрастать и тогда, когда точки располагаются о тех местах свариваемого узла, где сдавливание листов затруднено (вблизи ребер и других элементов жесткости, а местах сопряжения деталей но радиусу и т. д.).

Удельное давление возрастает вместе с прочностью свариваемого металла. При сварке низколегированных сталей оно может составить 120-160% к удельному давлению для малоуглеродистой стали, при сварке аустенитно и жаропрочных сталей и сплавов но повышается в 2-3 раза.

  • Диаметр электрода. Диаметр электрода (d) определяет плотность тока, удельное давление и степень интенсивности охлаждения поверхности детали.
  • На элек­трическое сопротивление зоны сварки диаметр электрода влияет относительно мало, лишь в конечной стадии на- грела, когда достигается полное соприкосновению поверхностей электрода и детали.
  • Поэтому яри длительном нагреве влияние диаметра электрода сказывается сильнее. Диаметр электрода возрастает с толщиной деталей.
  • Для толщины до 3 мм диаметр электрода рассчитывается но следующей формуле:

D=2 q+3мм,

где q - толщина более топкого листа.

Для деталей с большей толщиной расчет ведется по формуле

Изменением диаметра электрода часто пользуются для выравнивания нагрева отри сварке деталей, неодина­ковых по толщине или по роду металла.

В ходе процесса сварки под влиянием сильного нагрева и большой механической нагрузки рабочая часть электрода меняется с образованием грибовидною утолщения, а поверхность загрязняется окислами металла. Увеличение фактического диаметру электрода при неизменных силе тока и усилии сжатия означает снижение плотности тока и удельного давления. Вследствие этого интенсивность нагрева в сварочном контакте сильно уменьшается, а уплотнение металла затрудняется и сварка может оказаться некачественной. Кроме того, загрязнение поверхности электродов может вызвать увеличение переходного сопротивления, перегрев и даже оплавление поверхности листов. Обычно считают, что связанное с износом возрастание диаметра более чем на 10% уже недопустимо. Такие электроды должны зачищаться напильником, специальным приспособлением или перетачиваться.

Время предварительного сжатия

Пол временем предварительного сжатия понимается от начала приложения давления до начала нагрева. Оно должно быть достаточным, чтобы механизм сжатия успел свести электроды и развить давление до заданной величины. Этот параметр непосредственного влияния на тепловые процессы при сварке не имеет. Для повышения производительности данный параметр следует сокращать, насколько позволяет скорость работы механизма сжатия.

Время проковки

Время проковки (tnp) определяется длительностью нахождения уже сваренной точки под сжимающим воздействием электродов. Этот параметр влияет на скорость охлаждения металла после сварки, так как после нагрева, в условиях плотного соприкосновения электродов и детали, тепло от зоны сварки особенно быстро отводится в электроды.

При сварке закаливающихся сталей ускоренное охлаждение может вызвать появление трещин и время проковки поэтому следует уменьшать.

Однако во всех случаях давление не должно сниматься ранее некоторого времени, необходимого для полного затвердевания и упрочнения ядра. В противном случае деформированные при сварке листы, стремясь упруго возвратиться в начальное положение, могут разрушить еще не остывшее ядро, С повышением толщины время проковки возрастает, так как объем нагретого металла и время охлаждения увеличиваются.


Настройка контактных машин заключается в подготовке машины к работе, выборе режима сварки и настройке машины на этот режим, поддержании режима путем сохранения постоянных величин параметров сварки.
Основными параметрами при точечной и рельефной сварке являются сварочный ток, время протекания тока, усилие на электродах. При автоматической работе машины учитывается время опускания верхнего электрода и сжатия электродами свариваемого изделия, время проковки металла сварной точки после выключения тока и время паузы, необходимое для подъема верхнего электрода, освобождения свариваемого изделия и его съема или передвижения.
При шовной сварке учитывается время сварки и паузы между импульсами тока и скорость движения изделия.
При сварке на стыковых машинах в число основных параметров входят также установочная длина, общая величина осадки, величина осадки под током и без него, скорость оплавления и осадки.
При точечной и шовной сварке сварочный ток подбирают в зависимости от толщины свариваемых деталей. Изменение сварочного тока производится переключателями ступеней сварочного трансформатора. При работе на машинах, снабженных прерывателями тока, более тонкое регулирование тока осуществляется путем изменения угла поджигания игнитронов.
В зависимости от материала и конфигурации свариваемых деталей сварку можно вести на жестких и мягких режимах. Жесткие режимы сварки характеризуются большими токами и усилиями на электродах, малой длительностью сварки. Применение жестких режимов позволяет по сравнению с мягкими режимами увеличивать темп работы машины и получать более качественные сварные соединения.
Время сварки в современных машинах регулируется в широком диапазоне с помощью электронных регуляторов времени и других выключающих устройств.
В стыковых машинах большое значение имеет усилие осадки. Если для выбранного сечения деталей усилие осадки недостаточно, добиться стабильности результатов сварки нельзя.
При настройке стыковой машины следует обращать внимание, чтобы ток не выключался раньше начала осадки. Для этого необходимо предусматривать величину осадки деталей под током.
Установочную длину можно регулировать положением подвижной плиты относительно неподвижной. Изменение установочной длины приводит к нарушению режима сварки.
При стыковой сварке ток подбирается по сечению свариваемых деталей.

Популярные статьи

   Стеклоблоки - элитный материал