Идеальный газ уравнение его состояния. Универсальное уравнение состояния идеального газа

>>Физика и астрономия >>Физика 10 класс >>Физика: Уравнение состояния идеального газа

Состояние идеального газа

Сегодняшний урок физики мы посвятим рассмотрению темы об уравнении состояния идеального газа. Однако, вначале, попробуем разобраться с таким понятием, как состояние идеального газа. Нам известно, что частицы реально существующих газов, такие как атомы и молекулы имеют свои размеры и естественно, что заполняют какой-то объем в пространстве, и соответственно они немного зависимы друг от друга.

При взаимодействии между частицами газа, физические силы обременяют их перемещение и за счет этого ограничивают их маневренность. Поэтому газовые законы и их следствия, как правило, не нарушаются лишь для разреженных реальных газов. То есть, для газов, расстояние между частицами которых ощутимо превосходят собственный размер частиц газа. Кроме того, взаимодействие между такими частицами, как правило, минимально.

Поэтому, газовые законы при естественном атмосферном давлении имеют приблизительное значение и если это давление высокое, то законы не действуют.

Поэтому в физике принято рассматривать такое понятие, как состояние идеального газа. При таких обстоятельствах частицы принято расценивать, как некие геометрические точки, которые имеют микроскопические размеры и не имеют никакого взаимодействия между собой.

Уравнение состояния идеального газа

А вот, уравнение, которое связывает эти микроскопические параметры, и определяет состояние газа, принято называть уравнением состояния идеального газа.

К таким нулевым параметрам, без которых невозможно определить состояние газа, является:

К первому параметру относится давление, которое обозначают символом - Р;
Второй параметр – это объем –V;
И к третьему параметру относится температура – Т.
Из предыдущего раздела нашего урока, мы уже знаем, что газы могут выступать в роли реагентов или быть продуктами в химических реакциях, поэтому, при нормальных условиях, газы сложно заставить реагировать между собой, и для этого необходимо уметь определять число молей газов в условиях, которые отличаются от нормальных.

А вот для этих целей и используют уравнение состояния идеального газа. Это уравнение еще принято называть уравнением Клапейрона-Менделеева.

Такое уравнение состояния идеального газа можно легко получить из формулы зависимости давления и температуры, расписав в этой формуле концентрацию газа.

Такое уравнение и называется уравнением состояния идеального газа.

n – является числом молей газа;
P – давление газа, Па;
V – объем газа, м3;
T – абсолютная температура газа, К;
R – универсальная газовая постоянная 8,314 Дж/моль×K.

Впервые уравнение, которое помогает установить связь между давлением, объемом и температурой газов, получил и сформулировал в 1834 году знаменитый французский физик Бенуа Клапейрон, который длительное время работал в Петербурге. А вот Дмитрий Иванович Менделеев, великий русский ученый, в 1874 году впервые его применил, но перед тем он получил формулу методом объединения закона Авогадро с законом, который сформулировал Клапейрон.

Поэтому, закон, позволяющий сделать выводы о характере поведения газов, в Европе было принято называть законом Менделеева-Клапейрона.

Также, следует обратить внимание на то, что когда объём газа выражен в литрах, то уравнение Клапейрона-Менделеева будет иметь такой вид:



Надеюсь, что у вас не возникли проблемы при изучении этой темы и теперь вы имеете понятие о том, что такое уравнение состояния идеального газа и знаете, что с его помощью можно проводить расчеты параметров реальных газов в том случае, когда физические условия газов приближены к нормальным условиям.

Идеальный газ, уравнение состояния идеального газа, его температура и давление, объем… список параметров и определений, которыми оперируют в соответствующем разделе физики, можно продолжать достаточно долго. Сегодня мы поговорим как раз на эту тему.

Что рассматривается в молекулярной физике?

Основным объектом, который рассматривается в этом разделе, является идеальный газ. идеального газа было получено с учетом нормальных условий окружающей среды, и об этом мы поговорим немного позднее. Сейчас давайте подойдем к этой “проблеме” издалека.

Допустим, у нас есть некоторая масса газа. Ее состояние можно определить при помощи трех характера. Это, конечно же, давление, объем и температура. Уравнением состояния системы в этом случае будет формула связи между соответствующими параметрами. Она выглядит таким образом: F (p, V, T) = 0.

Вот здесь мы впервые потихоньку подбираемся к появлению такого понятия, как идеальный газ. Им называется газ, в котором взаимодействия между молекулами пренебрежимо малы. Вообще в природе такого не существует. Однако любой сильно близок к нему. От идеального мало чем отличаются азот, кислород и воздух, находящиеся в нормальных условиях. Чтобы записать уравнение состояния идеального газа, мы можем использовать объединенный Получим: pV/T = const.

Связанное понятие № 1: закон Авогадро

Он может рассказать нам о том, что если мы возьмем одинаковое количество молей абсолютно любого случайного газа и поставим их в одинаковые условия, среди которых температура и давление, то газы займут одинаковый объем. В частности, опыт проводился при нормальных условиях. Это означает, что температура была равна 273,15 Кельвинам, давление - одной атмосфере (760 миллиметров ртутного столба или же 101325 Паскалей). При таких параметрах газ занял объем равный 22,4 литра. Следовательно, мы можем говорить о том, что для одного моля любого газа соотношение числовых параметров будет величиной постоянной. Именно поэтому было принято решение этой цифре дать обозначение буквой R и назвать ее универсальной газовой постоянной. Таким образом, она равняется 8,31. Размерность Дж/моль*К.

Идеальный газ. Уравнение состояния идеального газа и манипуляции с ним

Давайте попробуем переписать формулу. Для этого запишем его в таком виде: pV = RT. Далее совершим нехитрое действие, умножим обе части уравнения на произвольное количество молей. Получим pVu = uRT. Примем во внимание тот факт, что произведение молярного объема на количество вещества есть просто объем. Но ведь количество молей одновременно будет равняться частному массы и молярной массы. Именно так выглядит Оно дает четкое понятие о том, какую систему образует идеальный газ. Уравнение состояния идеального газа примет вид: pV = mRT/M.

Выведем формулу для давления

Давайте проведем еще некоторые манипуляции с полученными выражениями. Для этого правую часть уравнения Менделеева-Клапейрона умножим и разделим на число Авогадро. Теперь внимательно смотрим на произведение количества вещества на Это есть не что иное, как общее число молекул в газе. Но в то же время отношение универсальной газовой постоянной к числу Авогадро будет равно постоянной Больцмана. Следовательно, формулы для давления можно записать таким образом: p = NkT/V или p = nkT. Здесь обозначение n это концентрация частиц.

Процессы идеального газа

В молекулярной физике существует такое понятие, как изопроцессы. Это которые имеют место в системе при одном из постоянных параметров. При этом масса вещества также должна оставаться постоянной. Давайте рассмотрим их более конкретно. Итак, законы идеального газа.

Постоянным остается давление

Это закон Гей-Люссака. Выглядит он так: V/T = const. Его можно переписать и по-другому: V = Vo (1+at). Здесь a равняется 1/273,15 К^-1 и носит название "коэффициент объемного расширения". Мы можем подставить температуру как по шкале Цельсия, так и по шкале Кельвина. В последнем случае получим формулу V = Voat.

Постоянным остается объем

Это второй закон Гей-Люссака, более часто называемый законом Шарля. Выглядит он так: p/T = const. Есть и другая формулировка: p = po (1 + at). Преобразования могут быть проведены в соответствии с предыдущим примером. Как можно видеть, законы идеального газа иногда бывают достаточно похожими друг на друга.

Постоянным остается температура

Если температура идеального газа остается величиной постоянной, то мы можем получить закон Бойля-Мариотта. Он может быть записан таким образом: pV = const.

Связанное понятие № 2: парциальное давление

Допустим, у нас имеется сосуд с газами. Это будет смесь. Система находится в состоянии теплового равновесия, а сами газы между собой не реагируют. Здесь N будет обозначать общее количество молекул. N1, N2 и так далее, соответственно, количество молекул в каждом из компонентов имеющейся смеси. Возьмем формулу давления p = nkT = NkT/V. Ее можно раскрыть для конкретного случая. Для двухкомпонентной смеси формула примет вид: p = (N1 + N2) kT/V. Но тогда получится, что общее давление будет суммироваться из частных давлений каждой смеси. А значит, оно будет иметь вид p1 + p2 и так далее. Это и будут парциальные давления.

Для чего это нужно?

Полученная нами формула указывает на то, что давление в системе оказывается со стороны каждой группы молекул. Оно, кстати, не зависит от других. Этим воспользовался Дальтон при формулировании закона, названного впоследствии в его честь: в смеси, где газы не реагируют между собой химически, общее давление будет равно сумме парциальных давлений.

«Физика - 10 класс»

В этой главе речь пойдёт о следствиях, которые можно извлечь из понятия температуры и других макроскопических параметров. Основное уравнение молекулярнокинетической теории газов вплотную приблизило нас к установлению связей между этими параметрами.

Мы детально рассмотрели поведение идеального газа с точки зрения молекулярно-кинетической теории. Была определена зависимость давления газа от концентрации его молекул и температуры (см. формулу (9.17)).

На основе этой зависимости можно получить уравнение, связывающее все три макроскопических параметра р, V и Т, характеризующие состояние идеального газа данной массы.

Формулой (9.17) можно пользоваться только до давления порядка 10 атм.

Уравнение, связывающее три макроскопических параметра р, V и Т, называют уравнением состояния идеального газа .

Подставим в уравнение р = nkT выражение для концентрации молекул газа. Учитывая формулу (8.8), концентрацию газа можно записать так:

где N A - постоянная Авогадро, m - масса газа, М - его молярная масса. После подстановки формулы (10.1) в выражение (9.17) будем иметь

Произведение постоянной Больцмана k и постоянной Авогадро N A называют универсальной (молярной) газовой постоянной и обозначают буквой R:

R = kN A = 1,38 10 -23 Дж/К 6,02 10 23 1/моль = 8,31 Дж/(моль К). (10.3)

Подставляя в уравнение (10.2) вместо kN A универсальную газовую постоянную R, получаем уравнение состояния идеального газа произвольной массы

Единственная величина в этом уравнении, зависящая от рода газа, - это его молярная масса.

Из уравнения состояния вытекает связь между давлением, объёмом и температурой идеального газа, который может находиться в двух любых состояниях.

Если индексом 1 обозначить параметры, относящиеся к первому состоянию, а индексом 2 - параметры, относящиеся ко второму состоянию, то согласно уравнению (10.4) для газа данной массы

Правые части этих уравнений одинаковы, следовательно, должны быть равны и их левые части:

Известно, что один моль любого газа при нормальных условиях (р 0 = 1 атм = 1,013 10 5 Па, t = 0 °С или Т = 273 К) занимает объём 22,4 л. Для одного моля газа, согласно соотношению (10.5), запишем:

Мы получили значение универсальной газовой постоянной R.

Таким образом для одного моля любого газа

Уравнение состояния в форме (10.4) было впервые получено великим русским учёным Д. И. Менделеевым. Его называют уравнением Менделеева-Клапейрона .

Уравнение состояния в форме (10.5) называется уравнением Клапейрона и представляет собой одну из форм записи уравнения состояния.

Б. Клапейрон в течение 10 лет работал в России профессором в институте путей сообщения. Вернувшись во Францию, участвовал в постройке многих железных дорог и составил множество проектов по постройке мостов и дорог.

Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни.

Уравнение состояния не надо выводить каждый раз, его надо запомнить. Неплохо было бы помнить и значение универсальной газовой постоянной:

R = 8,31 Дж/(моль К).

До сих пор мы говорили о давлении идеального газа. Но в природе и в технике мы очень часто имеем дело со смесью нескольких газов, которые при определённых условиях можно считать идеальными.

Самый важный пример смеси газов - воздух, являющийся смесью азота, кислорода, аргона, углекислого газа и других газов. Чему же равно давление смеси газов?

Для смеси газов справедлив закон Дальтона.


Закон Дальтона

Давление смеси химически невзаимодействующих газов равно сумме (ЦЩй их парциальных давлений

p = p 1 + p 2 + ... + p i + ... .


где р i - парциальное давление i-й компоненты смеси.

ОПРЕДЕЛЕНИЕ

Для того чтобы формулы и законы в физике были более простыми для понимания и использования применяют разного рода модели и упрощения. Такой моделью является идеальный газ . Модель в науке - это упрощенная копия реальной системы.

Модель отражает наиболее существенные характеристики и свойства процессов и явлений. В модели идеального газа учитываются только основные свойства молекул, которые требуются для того, чтобы объяснить основы поведения газа. Идеальный газ напоминает реальный газ в довольно узком интервале давлений (p) и температур (T).

Самым важным упрощением идеального газа является то, что кинетическая энергия молекул считается гораздо большей, чем потенциальная энергия их взаимодействия. Столкновения молекул газа описывают при помощи законов упругого соударения шаров. Движение молекул считают прямолинейными в промежутках между столкновениями. Эти допущения позволяют получить специальные уравнения, которые называют уравнениям состояния идеального газа. Данные уравнения можно применять к описанию состояний реального газа при невысоких температурах и давлениях. Уравнения состояния и можно назвать формулами для идеального газа. Приведем также другие основные формулы, которые используют при исследовании поведения и свойств идеального газа.

Уравнения состояния идеального

Уравнение Менделеева — Клапейрона

где p - давление газа; V - объем газа; T — температура газа по шкале Кельвина; m - масса газа; - молярная масса газа; — универсальная газовая постоянная.

Уравнением состояния идеального газа так же является выражение:

где n - концентрация молекул газа в рассматриваемом объеме; .

Основное уравнение молекулярно-кинетической теории

При помощи такой модели, как идеальный газ, получают основное уравнение молекулярно-кинетической теории (МКТ) (3). Которое говорит о том, что давление газа -это результат огромного числа ударов его молекул о стенки сосуда, в котором газ находится.

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда); - масса молекулы газа; - среднеквадратичная скорость молекулы.

Внутренняя энергия идеального газа

Так как в идеальном газе принимают потенциальную энергию взаимодействия молекул равной нулю, то внутренняя энергия равна сумме кинетических энергий молекул:

где i - число степеней свободы молекулы идеального газа; - число Авогадро; - количество вещества. Внутренняя энергия идеального газа определена его термодинамической температурой (T) и пропорциональна массе.

Работа идеального газа

Для идеального газа в изобарном процессе () работу вычисляют при помощи формулы:

В изохорном процессе работа газа равна нулю, так как изменения объема нет:

Для изотермического процесса ():

Для адиабатного процесса () работа равна:

где i - число степеней свободы молекулы газа.

Примеры решения задач по теме «Идеальный газ»

ПРИМЕР 1

Задание Какова плотность смеси идеальных газов при температуре T и давлении p, если масса одного газа его молярная масса , масса второго газа молярная масса ?
Решение По определению плотность однородного вещества () это:

где m - масса всего вещества; V - его объем. Масса смеси газов находится как сумма отдельных компонент смеси:

Осталось найти объем, который занимает смесь газов при заданных условиях. Для этого запишем уравнение Менделеева - Клапейрона для смеси:

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.