Что надо чтобы электроны двигались обратно. Свободные электроны в металлах

металле, как и во всех твёрдых телах, каждый атом занимает определённое место. Правда, при некоторых условиях атомы твёрдых тел могут покидать свои места, но во всяком случае они долгое время остаются «привя­занными» к определённому месту. В зависимости от тем­пературы каждый атом более или менее сильно колеб­лется около этого места, не удаляясь от него сколько - нибудь далеко. В отличие от других твёрдых тел металлы обладают одной интересной особенностью: в пространстве между атомами металлов движутся свободные электроны, то-есть электроны, не связанные с определёнными атомами.

Откуда берутся такие свободные электроны?

Дело в том, что в атомах не все электроны одинаково прочно удерживаются ядром. В электронных оболочках атомов металлов всегда есть один, два или три электрона, очень слабо связанных с ядром. Поэтому, например, при растворении различных солей входящие в их состав атомы металлов легко отдают эти электроны другим ато­мам, а сами превращаются в положительные ионы. Отрыв электронов от атомов происходит и в куске любого ме­талла, но все электроны, утерявшие связь с атомами, остаются в самом металле между образовавшимися ионами.

Число свободных электронов в металле огромно. Их примерно столько же, сколько атомов. Тем не менее весь кусок металла остаётся, конечно, незаряженным, так как положительный заряд всех ионов в точности равен отри­цательному заряду всех электронов.

Таким образом, строение металла мы может себе представить в таком виде. Атомы металла, потерявшие по 1-2 электрона, стали ионами. Они сравнительно прочно сидят на своих местах и образуют, можно сказать, жёсткий «скелет» куска металла. Между ионами быстро движутся по всем направлениям электроны. Некоторые из электронов при движении тормозятся, другие ускоря­ются, так что среди них всегда есть и быстрые и мед­ленные.

Движение свободных электронов вполне беспорядочно. Нельзя уловить в нём никаких струек или потоков, ника­кой согласованности. Свободные электроны движутся в металле приблизительно так, как мечутся мошки в тёп­лом воздухе летним вечером: в рое каждая из мошек ле­тает сама по себе то быстрее, то медленнее, а весь рой стоит на месте.

Среди беспорядочно движущихся электронов всегда есть такие, которые летят по направлению к поверхности металла. Будут ли они вылетать из металла? Ведь если оставить открытым сосуд с газом, молекулы которого также находятся в беспорядочном движении, как и электроны в металле, то молекулы газа быстро рассеются в воздухе. Однако электроны в обычных условиях не вы­летают из металла. Что же их удерживает? Притяжение ионами. Когда электрон поднимается немного над по­верхностью металла, над ним уже нет ионов, а внизу, на поверхности, есть. Эти ионы притягивают поднявшийся электрон, и он падает обратно на поверхность металла, как падает на землю брошенный вверх камень.

Если бы камень имел достаточно большую началь­ную скорость, он мог бы преодолеть притяжение Земли и

Улететь в межпланетное пространство, как улетает пу­шечное ядро в романе Жюль Верна. Очень быстрые элек­троны тоже могут преодолеть силы электрического притя­жения и покинуть металл. Это и происходит при нагре­вании.

При нагревании металла усиливается движение не только атомов, но и электронов, и при высокой темпера­туре из металла вылетает столько электронов, что их поток можно обнаружить. Посмотрите на рис. 7. На нём изображена необычная электрическая лампочка. В её баллоне на некотором расстоянии от нити накала укреп­лена металлическая пластинка. Пластинка называется анодом, а нить - катодом. К одному концу нити (всё равно к какому) и к аноду присоединена батарея, а между батареей и анодом в так называемую «анодную» цепь включён прибор, показывающий наличие электрического тока. Прибор этот называется гальванометром. Сама нить лампы включена в электрическую сеть и раскалена. Если анод соединён с отрицательным полюсом батареи, а нить с положительным, то тока в анодной цепи не будет (рис. 7 слева). Теперь попробуем поменять полюсы и присоеди­ним пластинку к «плюсу» батареи. В цепи сейчас же появится ток (рис. 7 справа). Этот опыт показывает, что раскалённая нить лампы действительно испускает отри­цательные заряды - электроны, которые отталкиваются от анода, если он заряжен отрицательно (рис. 7 слева), и увлекаются электрическими силами к аноду, если он присоединён к положительному полюсу батареи (рис. 7 справа).

Испускание электронов накалёнными металлами имеет огромное практическое значение. Достаточно сказать, что оно используется во всех радиолампах (о радиолампах мы ещё будем говорить в последнем разделе книжки).

Увеличить энергию электронов и заставить их выле­тать из металла можно не только нагреванием, но и освещением. Такие явления изучил в 1888 году русский физик, профессор Московского университета А. Г. Сто­летов. Поток световых лучей несёт энергию, и если свет падает на металл, то часть этой энергии поглощается ме­таллом и передаётся электронам. Получив добавочную энергию, некоторые электроны преодолевают притяжение ионов и вылетают из металла. Это явление называется фотоэлектрическим эффектом. Фотоэффект используется в очень важном для техники приборе - фотоэлементе. Схема фотоэлемента показана на рисунке 8.

Стеклянный баллон, из которого удалён воздух, по­крыт изнутри слоем металла, обычно натрия, калия или цезия, подвергнутого особой обработке (из этих металлов электроны легко вырываются при действии видимого света); не покрыто металлом только небольшое окошечко для пропускания света. Слой металла служит катодом фотоэлемента (фотокатодом). В середине баллона поме­щается или тонкая металлическая проволочка или сетка. Это - анод. Фотокатод соединяется с отрицательным по­люсом батареи, а анод - с положительным. Как только на фотокатод упадут световые лучи, некоторые электроны приобретают большую энергию и вырываются с его по­верхности. Сила электрического притяжения гонит их к аноду, и в цепи появляется ток. Если же освещение пре­кращается, ток исчезает). Заметим, что обоими описан­ными способами удается извлекать из металлов только очень небольшую часть имеющихся в них свободных электронов.

Легко понять, что электризация трением представляет собой процесс вырывания электронов. Так, например, при трении стекла о кожу электроны, извлечённые из стекла, переходят на кожу.

Итак, мы знаем, что электроны можно извлечь из ато­мов. Посмотрим теперь, как можно управлять электро­нами, покинувшими атомы.

– В Европе теперь никто на пианино не играет,
играют на электричестве.
–На электричестве играть нельзя – током убьет.
–А они в резиновых перчатках играют…
–Э! В резиновых перчатках можно!
«Мимино»

Странно… Играют на электричестве, а убивает почему-то каким-то там током… Откуда в электричестве ток? И что это за ток? Здравствуйте, уважаемые! Давайте разбираться.

Ну, во-первых, начнём с того, почему это играть на электричестве в резиновых перчатках всё-таки можно, а, например, в железных или свинцовых – нельзя, хотя металлические прочнее? Дело все в том, что резина не проводит электричество, а железо и свинец – проводят, поэтому и током ударит. Стоп-стоп… Мы идем не в ту сторону, давайте, разворачиваемся… Ага… Начинать нужно с того, что все в нашей Вселенной состоит из мельчайших частичек – атомов. Эти частички настолько малы, что, например, человеческий волос по толщине в несколько миллионов раз превосходит размер самого маленького атома водорода. Атом состоит (см. рисунок 1.1) из двух основных частей – положительно заряженного ядра, состоящего в свою очередь из нейтронов и протонов и вращающихся по определенным орбитам вокруг ядра электронов.

Рисунок 1.1 – Строение электрона

Суммарный электрический заряд атома всегда (!) равен нулю, то есть атом электрически нейтрален. Электроны имеют довольно сильную связь с атомным ядром, однако, если приложить некоторую силу и «вырвать» один или несколько электронов из атома (посредством нагревания или трения, например), то атом превратиться в положительно заряженный ион, поскольку величина положительного заряда его ядра будет больше величины отрицательного суммарного заряда оставшихся электронов. И наоборот, – если каким-либо образом добавить к атому один или несколько электронов (но не посредством охлаждения…), то атом превратится в отрицательно заряженный ион.

Электроны, входящие в состав атомов любого элемента,абсолютно идентичны по своим характеристикам: заряду, размеру, массе.

Теперь, если посмотреть на внутренний состав любого элемента можно увидеть, что не весь объем элемента занимают атомы. Всегда, в любом материале так же присутствуют как отрицательно заряженные, так и положительно заряженные ионы, причем процесс преобразования «отрицательно заряженный ион–атом–положительно заряженный ион» происходит постоянно. В процессе этого преобразования образуются так называемые свободные электроны – электроны, не связанные ни с одним из атомов или ионом. Оказывается, что различных веществ количество этих свободных электронов разное.

Так же из курса физики известно, что вокруг любого заряженного тела (даже такого ничтожно малого, как электрон) существует так называемое невидимое электрическое поле, основными характеристиками которого являются напряженность и направление. Условно принято, что поле всегда направлено из точки положительного заряда к точке отрицательного заряда. Такое поле возникает, например, при натирании эбонитовой или стеклянной палочки о шерсть, при этом в процессе можно услышать характерный треск, явление которого мы рассмотрим позже. Причем, на стеклянной палочке будет образовываться положительный заряд, а на эбонитовой – отрицательный. Это как раз и будет означать переход свободных электронов одного вещества в другое (со стеклянной палочки в шерсть и из шерсти в эбонитовую палочку). Переход электронов означает изменение заряда. Для оценки этого явления существует специальная физическая величина – количество электричества, названная кулон, причем 1Кл= 6.24 10 18 электронов. Исходя из этого соотношения заряд одного электрона (или его по-другому называют элементарным электрическим зарядом) равен:

Так при чем же здесь все эти электроны и атомы… А вот при чём. Если взять материал с большим содержанием свободных электронов и поместить его в электрическое поле, то все свободные электроны будут двигаться в направлении положительной точки поля, а ионы – поскольку они имеют сильные межатомные (межионные) связи –оставаться внутри материала, хотя по идее они должны двигаться к той точке поля, заряд которой противоположен заряду иона. Это было доказано с помощью простого эксперимента.

Два различных материала (серебро и золото) соединили друг с другом и поместили в электрическое поле на несколько месяцев. Если бы наблюдалось движение ионов между материалами, то в месте контакта должен был бы произойти процесс диффузии и в узкой зоне серебра образоваться золото, а в узкой зоне золота – серебро, но такого не произошло, что и доказало неподвижность «тяжелых» ионов. На рисунке 2.1 показано движение положительной и отрицательной частиц в электрическом поле: отрицательно заряженные электроны движутся против направления поля, а положительно заряженные частицы – по направлению поля. Однако это справедливо только для частиц, не входящих в кристаллическую решетку какого-либо материала и не связанных между собой межатомными связями.

Рисунок 1.2 – Движение точечного заряда в электрическом поле

Движение происходит именно таким образом, потому как одноимённые заряды отталкиваются, а разноимённые – притягиваются: на частицу всегда действуют две силы: сила притяжения и сила отталкивания.

Так вот, именно упорядоченное движение заряженных частиц и называют электрическим током. Существует забавный факт: изначально считалось (до открытия электрона), что электрический ток порождён именно положительными частицами, поэтому направление тока соответствовало движению положительных частиц от «плюса» к «минусу», однако впоследствии обнаружилось обратное, но направление тока решено было оставить прежним, и в современной электротехнике осталась эта традиция. Так что всё на самом деле наоборот!

Рисунок 1.3 – Строение атома

Электрическое поле можно, хоть и характеризуется величиной напряженности, но создается вокруг любого заряженного тела. Например, если всё ту же стеклянную и эбонитовую палочки натереть о шерсть, то вокруг них возникнет электрическое поле. Электрическое поле существует около любого объекта и воздействует на другие объекты, сколь угодно далеко они бы ни располагались.Однако с ростом расстояния между ними напряженность поля уменьшается и её величиной можно пренебречь, так что два человека, стоящие рядом и имеющие некоторый заряд, хоть и создают электрическое поле, и между ними протекает электрический ток, но он настолько мал, что его величину трудно зафиксировать даже специальными приборами.

Так вот, пора бы уже побольше рассказать о том, что это за характеристика – напряженность электрического поля. Начинается всё с того, что в 1785 году французский военный инженер Шарль Огюстен де Кулон, отвлекшись от рисования военных карт, вывел закон, описывающий взаимодействие двух точечных зарядов:


Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Мы не будем углубляться в то, почему это именно так, просто поверим на слово господину Кулону и введём некоторые условия для соблюдения этого закона:

  • точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными не пересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  • их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  • взаимодействие в вакууме.

Математически закон записывается следующим образом:

где q 1 ,q 2 – величины взаимодействующих точечных зарядов,
r – расстояние между этими зарядами,
k – некоторый коэффициент, описывающий влияние среды.
На рисунке ниже приведено графическое пояснение закона Кулона.

Рисунок 1.4 – Взаимодействие точечных зарядов. Закон Кулона

Таким образом, сила взаимодействия между двумя точечными зарядами возрастает при увеличении этих зарядов и уменьшается при увеличении расстояния между зарядами, причём увеличение расстояния в два раза приводит к уменьшению силы в четыре раза. Однако подобная сила возникает не только между двумя зарядами, но и между зарядом и полем (и опять электрический ток!). Логично было бы предположить, что на различные заряды одно и то же поле оказывает различное влияние. Так вот отношение силы взаимодействия поля и заряда к величине этого заряда и называется напряжённостью электрического поля. При условии, что заряд и поле неподвижны и не изменяют своих характеристик с течением времени.

где F – сила взаимодействия,
q – заряд.
Причём, как говорилось ранее, поле имеет направление, и это возникает именно исходя из того, что сила взаимодействия имеет направление (является векторной величиной: одноимённые заряды притягиваются, разноимённые – отталкиваются).
После того, как я написал этот урок, я попросил моего друга прочитать его, оценить, так скажем. Кроме того, я задал ему один интересный на мой взгляд вопрос как раз по теме этого материала. Каково же было моё удивление, когда он ответил неверно. Попробуйте и Вы ответить на этот вопрос (он помещен в раздел задач в конце урока) и аргументировать свою точку зрения в комментариях.
И последнее: поскольку поле может переместить заряд из одной точки пространства в другую, оно обладает энергией, а, следовательно, может совершать работу. Этот факт пригодится нам в дальнейшем при рассмотрении вопросов работы электрического тока.
На этом первый урок окончен, но у нас так и остался без ответа вопрос, почему же, в резиновых перчатках током не убьет. Оставим его как интригу на следующий урок. Спасибо за внимание, до новых встреч!

  • Наличие свободных электронов в веществе является условием для возникновения электрического тока.
  • Для возникновения электрического тока необходимо электрическое поле, которое существует только вокруг тел, обладающих зарядом.
  • Направление протекания электрического тока обратно направлению движения свободных электронов – ток течёт от «плюса» к «минусу», а электроны наоборот – от «минуса» к «плюсу».
  • Заряд электрона равен 1.602 10 -19 Кл
  • Закон Кулона: модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

  • Предположим, что в городе-герое Москве имеется некая розетка, самая такая обычная розетка, которые есть и у Вас дома. Так же предположим, что мы протянули провода из Москвы во Владивосток и подключили во Владивостоке лампочку (опять же, лампа совершенно обычная, такая же освещает сейчас комнату и мне, и Вам). Итого, что мы имеем: лампочка, присоединенная к концам двух проводов во Владивостоке и розетку в Москве. Теперь вставим «московские» провода в розетку. Если мы не будем учитывать массу всяких условий и просто предположим, что лампочка во Владивостоке загорелась, то попробуйте предположить, доберутся ли электроны, которые в данный момент находятся в розетке в Москве в нить накала лампочки во Владивостоке? Что случится, если мы подключим лампочку не к розетке, а к аккумулятору?

Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до "фундаментальной" кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.

На самый поверхностный взгляд природа тока кажется простой: ток - это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.

В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:

  • В металлах есть свободные электроны;
  • В металлических и керамических сверхпроводниках - тоже электроны;
  • В жидкостях - ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
  • В газах - снова ионы, а также электроны;
  • А вот в полупроводниках электроны несвободны и могут двигаться "эстафетно". Т.е. двигаться может не электрон, а как бы место, где его нет - "дырка". Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.

У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.

Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси "Пора по пиву": "...если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ..." :)

И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно:) вроде бы неделимые) несущие заряд - это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон - есть и поле) объясняет массу ряда частиц, а масса - это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд - это в чём-то родственные вопросы.

Многое известно о природе электрического тока, но самое главное пока нет.

Электричество (от греч. elektron янтарь, так как янтарь притягивает легкие тела), или ток начали использовать только в 1800 году, когда итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта изобрёл первую в мире батарею и тем самым дал первый надёжный постоянный источник электроэнергии.

А как же возникает электричество?

Всё вокруг состоит и малюсеньких частиц, которые не видны человеческому глазу, – атомов. Атом состоит из более мелких частиц: в центре – ядро, а вокруг него вращаются электроны. Ядро состоит из нейронов и протонов. Электроны, которые вращаются вокруг ядра, имеют отрицательный заряд (-), а протоны, которые находятся в ядре, – положительный (+). Обычно количество электронов в атоме совпадает с количеством протонов в ядре, поэтому атом не имеет заряда – он нейтрален.

Бывают такие атомы, у которых может не хватать одного электрона. Они имеют положительный заряд (+) и начинают притягивать электроны (-) из других атомов. И в этих, других атомах электроны слетают со своих орбит, меняют траекторию движения. Движение электронов от одного атома к другому приводит к образованию энергии. Эта энергия и называется электричеством.

А откуда берётся электричество в наших домах?

Мы получаем электричество благодаря большим электростанциям. На электростанциях есть генераторы – большие машины, которые работают от источника энергии. Обычно источник – это тепловая энергия, которую получают при нагревании воды (пар). А для нагревания воды используют уголь, нефть, природный газ или ядерное топливо. Пар, который образуется при нагревании воды, приводит в действие огромные лопасти турбины, а те в свою очередь запускают генератор.

Энергию можно получить, используя силу воды, падающей с большой высоты: с плотин или водопадов (гидроэнергетика).

Как источник питания для генераторов можно использовать силу ветра или тепло Солнца, но к ним прибегают не часто.

Далее работающий генератор при помощи огромного магнита создаёт поток электрических зарядов (ток), который проходит по медным проводам. Чтобы передавать электричество на большие расстояния, необходимо увеличить напряжение. Для этого используют трансформатор – устройство, которое может повышать и понижать напряжение. Теперь электричество с большой мощностью (до 10000 вольт и более) по огромным кабелям, которые находятся глубоко под землёй или высоко в воздухе, движется к месту назначения. Перед тем, как попасть в квартиры и дома, электричество проходит через другой трансформатор, который понижает его напряжение. Теперь готовое к использованию электричество движется по проводам к необходимым объектам. Количество использованного электричества регулируется специальными счётчиками, которые прикрепляются к проводам, которые проложенные через стены и полы. подводят электричество в каждую комнату дома или квартиры. Благодаря электричеству работает освещение и телевидение, различные бытовые приборы.

Если Вам необходима помощь при решении задач по физике или математике, онлайн репетиторы всегда готовы Вам помочь. В любое время и в любом месте ученик может обратиться за помощью к онлайн репетитору и получить консультацию по любому предмету школьной программы. Обучение проходит посредством специально разработанного программного обеспечения. Квалифицированные педагоги оказывают помощь при выполнении домашних заданий, объяснении непонятного материала; помогают подготовиться к ГИА и ЕГЭ. Ученик выбирает сам, проводить занятия с выбранным репетитором на протяжении длительного времени, или использовать помощь педагога только в конкретных ситуациях, когда возникают сложности с определённым заданием.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.