Что такое генномодифицированные растения. Генномодифицированные организмы - ГМ – растения в России

Число жителей Земли за последнее столетие увеличилось с 1.5 до 5.5 млрд. человек, а к 2020 году предполагается вырост до 8 млрд., таким образом возникает огромная проблема, стоящая перед человечеством. Эта проблема заключается в огромном увеличение производства продуктов питания, несмотря на то, что за последние 40 лет производство увеличилось в 2.5 раза, все равно этого не достаточно. И в мире в связи с этим наблюдается социальный застой, который становится все более настоятельным. Другая проблема возникла с медицинским лечением. Несмотря на огромные достижение современной медицины, производимые сегодня лекарственные препараты столь дороги, что населения земли сейчас полностью полагаются на традиционные донаучные методы лечения, прежде всего на неочищенные препараты растительного происхождения.

В развитых странах лекарственные средства на 25% состоят из природных веществ, выделенных из растений. Открытия последних лет (противоопухолевые препараты: таксол, подофиллотоксин) свидетельствуют о том, что растения еще долго будут оставаться источником полезных биологически-активных веществ (БТА), и что способности растительной клетки к синтезу сложных БТА все еще значительно превосходят синтетические способности инженера-химика. Вот почему ученые взялись за проблему создания трансгенных растений.

Создание генетически модифицированных (ГМ) продуктов является сейчас ее самой главной и самой противоречивой задачей.

Преимущества ГМ - продуктов очевидны: они не подвержены вредному влиянию бактерий, вирусов, отличаются высокой плодовитостью и длительным сроком хранения. Неочевидны последствия их употребления: учёные-генетики пока не могут ответить на вопрос, безвредны ли генетически модифицированные продукты для человека.

Виды гмо

Генетически модифицированные организмы появились в конце 80-х годов двадцатого века. В 1992 году в Китае начали выращивать табак, который "не боялся" вредных насекомых. Но начало массовому производству модифицированных продуктов положили в 1994 году, когда в США появились помидоры, которые не портились при перевозке.

ГМО объединяют три группы организмов:

генетически модифицированные микроорганизмы (ГММ);

генетически модифицированные животные (ГМЖ);

генетически модифицированные растения (ГМР) – наиболее распространенная группа.

На сегодня в мире существует несколько десятков линий ГМ-культур: сои, картофеля, кукурузы, сахарной свеклы, риса, томатов, рапса, пшеницы, дыни, цикория, папайи, кабачков, хлопка, льна и люцерны. Массово выращиваются ГМ-соя, которая в США уже вытеснила обычную сою, кукуруза, рапс и хлопок.

Посевы трансгенных растений постоянно увеличиваются. В 1996 году в мире под посевами трансгенных сортов растений было занято 1,7 млн. га, в 2002 году этот показатель достиг 52,6 млн. га (из которых 35,7 млн. га – в США), в 2005 г ГМО-посевов было уже 91,2 млн. га, в 2006 году – 102 млн. га.

В 2006 году ГМ-культуры выращивали в 22 странах мира, среди которых Аргентина, Австралия, Канада, Китай, Германия, Колумбия, Индия, Индонезия, Мексика, Южная Африка, Испания, США. Основные мировые производители продукции, содержащую ГМО – США (68%), Аргентина (11,8%), Канада (6%), Китай (3%).

Страница 9 из 11

ГМ – растения в России

На российском рынке ГМ-продукция появилась в 90-е годы. В настоящее время в России разрешенными являются 17 линий ГМ-культур (7 линий кукурузы, 3 линии сои, 3 линии картофеля, 2 линии риса, 2 линии свеклы) и 5 видов микроорганизмов. Наиболее распространенной добавкой является ГМ-соя, устойчивая к гербициду раундапу (линия 40.3.2). Вроде бы разрешенных сортов немного, но добавляются они во многие продукты. ГМ-компоненты встречаются в хлебо-булочных изделиях, в мясных и в молочных продуктах. Много их и в детском питании, особенно для самых маленьких.

Комиссия Государственной экологической экспертизы по оценке безопасности ГМ-культур, работающая в рамках закона РФ "Об экологической экспертизе", не признала ни одну из представленных для утверждения линий безопасной. (Членами этой комиссии являются представители трех основных российских академий: РАН, РАМН и РАСХН). Благодаря этому в России выращивание ГМ-культур официально запрещено, а вот импорт ГМ-продуктов разрешен, что вполне соответствует чаяниям компаний-монополистов на рынке ГМ-продуктов.

Сейчас в стране много продуктов, которые содержат ГМ-компоненты, но все они поступают к потребителю без соответствующих маркировок, несмотря на подписанное В.В.Путиным в конце 2005г. "Дополнение к закону о защите прав потребителей об обязательной маркировке ГМ-компонентов". Проведенная Институтом питания РАМН проверка не соответствовала "Методическим Указаниям по проверке ГМО", подписанным Г.Г.Онищенко, а в некоторых случаях полученные данные полностью противоречили заявленным выводам. Так, при экспериментальной проверке Институтом питания сортов американского ГМ-картофеля "Рассет Бурбанк" на крысах у животных наблюдались серьезные морфологические изменения в печени, почках, толстой кишке; понижение гемоглобина; усиление диуреза; изменение массы сердца и предстательной железы. Однако Институт питания сделал вывод, что "изученный сорт картофеля может быть использован в питании человека при проведении дальнейших эпидемиологических исследований", т.е. при изучении клинической картины заболевания и его распространения среди населения (Медико-биологические исследования трансгенного картофеля, устойчивого к колорадскому жуку. Отчет Института питания РАМН. М: Институт питания РАМН. 1998, 63с.).

В нашей стране по непонятным причинам практически не проводятся научные и клинические исследования и испытания влияния ГМО на животных и человека. Попытки провести такие исследования наталкиваются на огромное сопротивление. А ведь влияние ГМ-продуктов на человека все еще совершенно не изучено, последствия их широкого распространения непредсказуемы.

Проведенное нами исследование влияния ГМ-сои, устойчивой к гербициду раундапу (RR, линия 40.3.2), на потомство лабораторных крыс показала повышенную смертность крысят первого поколения, недоразвитость части выживших крысят, патологические изменения в органах и отсутствие второго поколения (Ермакова, 2006; Ermakova, 2006, 2007; Ермакова & Барсков, 2008). При этом мы подкармливали ГМ-соей только самок за две недели до спаривания, во время спаривания и лактации. Сою добавляли в виде соевой муки (три повторные серии), соевых семян или соевого шрота. Более 30% крысят из группы ГМ-соя были недоразвитыми, имели значительно меньшие размеры и массу тела, чем обычные крысята на этом сроке развития. В контрольных группах таких крысят было в несколько раз меньше. В других сериях ГМ-сою добавляли к корму не только самок, но и самцов. При этом не смогли получить нормальное первое поколение: 70% крыс потомство не дали (Малыгин, Ермакова, 2008). В другой работе не удалось получить потомство у мышей в соевых группах (Малыгин, 2008). Снижение рождаемости и уменьшение концентрации тестостерона у самцов наблюдалось у хомячков Кэмпбелла при добавлении в их корм семян той же линии ГМ-сои (Назарова, Ермакова, 2009).

На огромные риски для здоровья человека, обусловленные потреблением "трансгенных" продуктов, указывалось в работах российских ученых (О.А.Монастырский, В.В.Кузнецов, А.М.Куликов, А.В.Яблоков, А.С.Баранов и многие другие). В научной литературе появились статьи о взаимосвязи ГМО с онкологией. По мнению учёных, внимание надо обратить не только на особенности трансгенов. которые внедряются, и безопасность белков, которые образуются, но и на технологии встраивания генов, которые еще очень несовершенны и не гарантируют безопасность организмов, созданных с их помощью.

По данным О. А.Монастырского и М.П.Селезневой (2006), за 3 года импорт в нашу страну увеличился в 100 раз: более 50% пищевой продукции и 80% кормов содержат зерно или продуктов их переработки (ГМ сои, рапса, кукурузы), а также некоторые виды плодов и овощей. В настоящее время генетически модифицированные источники по оценке экспертов могут содержать 80% овощных консервов, 70% мясных продуктов, 70% кондитерских изделий, 50% - фруктов и овощей, 15-20% молочных продуктов и 90% - пищевых смесей для детей. Возможно, что резкое увеличение по данным "Медицинского информационного агентства" в России числа онкологических заболеваний, особенно кишечного тракта и предстательной железы, всплеска лейкемии у детей, связано с использованием именно генетически-модифицированных компонентов в продуктах питания.

По мнению российских генетиков "…поедание организмов друг другом может лежать в основе горизонтального переноса, поскольку показано, что ДНК переваривается не до конца и отдельные молекулы могут попадать из кишечника в клетку и в ядро, а затем интегрироваться в хромосому" (Гвоздев, 2004). Что же касается колечек плазмид (кольцевая ДНК), которые используются как вектор для внедрения генов, то кольцевая форма ДНК делает их более устойчивыми к разрушению.

Российские ученые В.В.Кузнецов и А.М.Куликов, (2005) считают, что "снижение или исключение рисков при выращивании трансгенных растений предполагает значительное совершенствование технологии получения ГМО, создание трансгенных растений нового поколения, всестороннее изучение биологии ГМ растений и фундаментальных основ регуляции экспрессии генома". Все это означает, что существует настоятельная необходимость в проведении в России тщательных и независимых научных исследований влияния ГМО на живые организмы и их потомство, а также в разработке безопасных для живых организмов и окружающей среды биотехнологических методов.

Проверка генетически модифицированных организмов в России осуществляется Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор), которая была образована в соответствии с Указом Президента Российской Федерации от 9 марта 2004 г. № 314. В разных городах России были созданы лаборатории с использованием полимеразной цепной реакции (ПЦР) для выявления ГМ-компонентов в продуктах питания.

Действующая в России система оценки безопасности ГМО требует проведения более широкого спектра исследований, чем в других странах (США, Евросоюз) и включает в себя длительные токсикологические исследования на животных – 180 дней (Евросоюз – 90 дней), а также применение современных методов анализа, таких как, определение генотоксичности, геномный и протеомный анализы, оценка аллергенности на модельных системах и многое другое, что является дополнительным фактором, гарантирующим безопасность регистрируемых пищевых продуктов, полученных из ГМО. Эти многоплановые исследования осуществляются в целом ряде ведущих научно-исследовательских учреждений системы Роспотребнадзора, РАМН, РАН, РАСХН и Минобрнауки России.

В соответствии с законодательством Российской Федерации (Федеральные законы от 05.07.1996 № 86-ФЗ "О государственном регулировании в области генно-инженерной деятельности", от 02.01.2000 № 29-ФЗ "О качестве и безопасности пищевых продуктов" и от 30.03.1999 № 52-ФЗ "О санитарно-эпидемиологическом благополучии населения") пищевая продукция из ГМО относится к категории "новой пищи" и подлежит обязательной оценке на безопасность и последующему мониторингу за оборотом.

Согласно письму Роспотребнадзора от 24.01.2006 № 0100/446-06-32 содержание в пищевых продуктах 0,9 % и менее компонентов, полученных с применением ГМО, является случайной или технически неустранимой примесью и пищевые продукты, содержащие указанное количество компонентов ГМО, не относятся к категории пищевых продуктов, содержащих компоненты, полученные с применением ГМО, и не подлежат этикетированию. Однако отсутствие хорошо подготовленной лабораторной базы на местах делает это постановление ещё одной лазейкой для предпринимателей, позволяющей не ставить маркировку на продуктах.

Научные разработки инженеров–генетиков 20 века привели к тому, что в конце восьмидесятых годов впервые появились генетически модифицированные организмы (ГМО). ГМО включали три группы: генетически модифицированные микроорганизмы или ГММ; генетически модифицированные растения или ГМР; генетически модифицированные животные или ГМЖ. Процесс «подсаживания» чужеродного гена любого организма в геном исходного организма получил название трансгенеза, а перенос генов в родственных видах организмов – цисгенеза. Организмы, полученные в результате такого процесса называются «трансгенные организмы». Например, растения, полученные таким путем, еще называют «трансгенные растения ». Целью таких переносов из генома в геном было желание наделить нужный организм ценными жизненными свойствами другого организма. В частности, когда дело коснулось растительного мира, то перед учеными открывались широкие возможности для изменения исходного генома теоретически в любом необходимом направлении.

Существуют две причины спровоцировавшие интерес генетиков к проблемам урожайности мира растений. Первая причина – это необходимость увеличения количества продуктов питания в связи с ростом популяции человека. Вторая причина – это практически неограниченные возможности получения растительного сырья для производства лекарственных средств. К примеру, открытые недавно способности растительной клетки к производству сложнейших биологически активных веществ (БТА), используемых в составе противоопухолевых препаратов (подофиллотоксин, таксол), нельзя не взять на вооружение фармацевтической промышленности, что она с успехом и делает, так как искусственно синтезировать данные вещества в химической отрасли пока нет возможности.

Основа высокого урожая растений – это отсутствие различных факторов, влияющих губительно на жизненный цикл растения. К их числу относятся:

  • Насекомые-вредители
  • Неустойчивость к действию гербицидов
  • Заболевания растений, вызванные бактериями, вирусами, грибами
  • Низкая устойчивость к воздействию минусовых температур
  • Плохая переносимость засушливых климатических периодов
  • Засоленность почв

Научный прорыв в столь тонком деле как генная инженерия, с одной стороны стал благом для человечества, решил проблемы питания и производства лекарственных средств, но с другой стороны стал фактором, приводящим к уязвимости организмов, потребляющих ГМО (животных и человека). Почему?

Если разобраться подетально, как действует ГМО на мир растений, насекомых, животных и человека, то рисуется такая картина.

    В сельском хозяйстве при выращивании кукурузы и хлопчатника долгое время очень удачно использовался органический инсектицид - бактериальный Bt-токсин (в виде суспензии бактерий Bacillus thuringiensis) для борьбы с множеством вредных насекомых.

    Полученные путем встраивания гена Bt-токсина в соответствующих представителей нужного вида растений, биоинженерные растительные конструкции оказались очень устойчивыми к насекомым-вредителям, и более того, если раньше погибали от действия инсектицида и полезные насекомые, то теперь действие токсина стало избирательным – только на насекомых-вредителей. Но, оказалось, что встроенный инсектицид присутствует в таком растении постоянно, и поэтому невозможно регулировать его концентрацию. А также, токсин располагается и в тех частях растения (особенно в первом поколении ГМР), которые ранее не затрагивали насекомые.

  1. Гербициды, которыми раньше обрабатывались сельскохозяйственные угодья, действовали на вредные растения, нарушая их обменные процессы и приводя к гибели, за счет таких химических веществ, как глюфозинат амония, глифосат и другие. Перенеся из грунтовых бактерий Agrobacterium tumefaciens в растения ген EPSPS, а из бактерии Streptomyces viridochromogenes - ген PAT, ученые получили растения, устойчивые к глифосату и глюфозинату аммония соответственно. Это снизило затраты на обработку полей ядохимикатами. Но выявились факты, что существует опасность передачи такого свойства как устойчивость к гербицидам, другим растениям (например, сорнякам). Были, также, проведены исследования на предмет устойчивости этих свойств у растений на протяжении нескольких лет и выяснилось, что без дополнительной обработки гербицидами эта устойчивость «вымывается» из генома. Но когда дело касается деревьев, которые годами растут без смены поколения, то вопрос безопасности остается открытым.
  2. Многие, культивируемые в мире растения, подвержены грибковым, бактериальным и вирусным заболеваниям, которые приводят к гибели урожая. Генетики нашли способы, которые дают возможность растению сопротивляться таким заболеваниям. Например, одной из очень распространенных технологий является косупрессия. Она позволяет перенести в ДНК растения ген специального вируса, который занимается перекодировкой белка растения, после чего растение начинает производить белок вируса накануне того времени, когда заразится вирусной инфекцией, и тем самым включает заранее защитный механизм у растения, чтобы не дать размножится вирусу.

    Далее, у растений семейства пасленовых (томаты, баклажаны, картофель) есть грибковое заболевание – фитофтороз. Раньше культивация этих растений требовала обработки полей фунгицидом множеством раз за один сезон (до 16 раз), что значительно отравляло почву и воды. Были созданы генно-модифицированные представители этих растений с признаками устойчивости к фитофторозу, но наряду с полезными свойствами ген перенес и ряд нежелательных качеств для растений.

    Наряду с экспериментами инженеров-генетиков в области создания генных модификаций, проводились и противоположные исследования, направленные на выявление нежелательных последствий при потреблении продуктов генной инженерии животными и человеком. Лабораторным животным на протяжении, определенного экспериментом времени, давали корма из трансгенных растений . Результаты оказались неутешительные:

    У крыс стал накапливать природный токсин в организме, снизился иммунитет, изменился состав крови, появились аллергические реакции, необратимые изменения в пищеварительной системе;

    Потомство крыс получилось с высокой смертностью, недоразвитое, с аномалиями внутренних органов, с пониженной сопротивляемостью заболеваниям, второе поколение оказалось бесплодным.

    Что касается здоровья человека, то проводить исследования по влиянию ГМО и трансгенных растений на человеческий организм достаточно сложно, так как это требует больших временных промежутков. Как правило, все исследования в этой области носят характер анализа статистически собранной информации. В результате полученных таким образом данных, выяснилось, что на сегодняшний день особую опасность представляют собой аллергические реакции на продукцию генной инженерии. Дело в том, что перенос гена – это фактически перенос чужеродного белка, на который организм в нормальном состоянии отвечает соответствующей реакцией иммунитета – аллергической реакцией . А последствия аллергии могут оказаться очень тяжелыми и даже вызывать гибель.

    Ученые также обеспокоены тем фактом, что существует большой риск развития со временем в организме человека процессов:

    • нарушения обмена веществ,
    • изменения микрофлоры кишечника,
    • повышения устойчивости к антибиотикам,
    • аллергических реакций неизвестного происхождения,
    • снижения функций иммунитета.

    Отдельная тема для беспокойства ученых – это так называемый горизонтальный перенос генов от потребленного генно-модифицированного растения к животному или от растения и животного с генной модификацией к человеку. Суть этих опасений заключается в том, что при приеме пищи человек потребляет некоторое количество ДНК (приблизительно от 0. 1 до 1 грамма). Процесс пищеварения разбивает ДНК на отдельные нуклеотиды, которые и доходят до кишечника. Но так как некоторые растения в своем измененном генетическом коде несут частицы кода животных (например - скорпиона), то опасения вызывает возможность (пока еще теоретическая) встраивания кусков ДНК в клетки животного, которые могут активировать спящий генетический потенциал у человека.

    Все вышеперечисленные опасности будут научно обоснованы только через определенный промежуток времени, и ученые не знают, какой именно. Пока не хватает фактов для такого обоснования. А значит, могут смениться даже поколения, прежде чем опасность потребления ГМО и трансгенных растений будет доказана.

Сегодня насчитываются сотни трансгенных растений и тысячи трансгенных продуктов, произведенных на их основе. Как правило, генные модификации распространены в четырех направлениях:

Сырье для продуктов:

  • Кукуруза
  • Свекла
  • Морковь
  • Картофель
  • Томаты
  • Зерновые
  • Масла

Овощи и фрукты для потребления:

  • свежие
  • законсервированные

Продукты питания:

  • Производные сои (соевое молоко, сами бобы и их проростки, соевый творог и так далее)
  • Производные кукурузы (хлопья, поп-корн, палочки, мука, крупа, масло, крахмал)
  • Производные томатов (пюре, паста, кетчуп, соки, соусы)
  • Производные сахарной свеклы (сахар, спирт)
  • Производные картофеля (крахмал, чипсы, картофель-фри, пюре-полуфабрикат)
  • Производные зерновых (мука, крупы, крекеры, хлебцы, хлеб, макаронные изделия)
  • Растительные масла (трансжиры)
  • Производные риса (мука, зерно, гранулы, хлопья)

Пищевые добавки:

  • Натуральные красители
  • Подсластители
  • Структурирующие добавки
  • Консерванты

И это еще не полный список, так как надо добавить мясные и колбасные изделия, ассортимент которых весьма широк.

Производство генетически модифицированной продукции (ГМП) тяжело остановить, но многие ученые сходятся во мнении, что всегда должно быть право выбора для человечества: потреблять ГМП или выращивать те виды, которые естественны. Для этих целей существует система маркировки продуктов с ГМО . Приняты определенные законодательные акты, принуждающие производителя маркировать свою продукцию. Но действуют они либо не во всех странах, либо – избирательно.

Но кроме готовой продукции есть еще и сырье, которое может быть не маркированно, а значит и продукт, изготовленный из него, не будет иметь маркировки ГМО .

Тема этой статьи: "ГМО: польза или вред?". Попробуем разобраться в этом вопросе непредвзято. Ведь именно недостатком объективности грешат сегодня многие материалы, посвященные этой неоднозначной теме. Сегодня во многих странах мира (включая Россию) понятие ГМО стало употребляться, когда говорят о "продуктах, которые вызывают опухоли и мутации". Со всех сторон ГМО поливаются грязью по разным поводам: невкусные, небезопасные, угрожают продовольственной независимости нашей страны. Но так ли страшны и что это на самом деле такое? Давайте ответим на эти вопросы.

Расшифровка понятия

ГМО - это генномодифицированные организмы, то есть измененные с помощью методов генной инженерии. Понятие это в узком смысле распространяется и на растения. В прошлом различные селекционеры, вроде Мичурина, добивались полезных свойств у растений, используя различные ухищрения. К ним относились, в частности, прививки черенков некоторых деревьев на другие или выбор для посева семян лишь с определенными качествами. После этого нужно было долго ждать результатов, которые лишь через пару поколений стойко проявлялись. Сегодня нужный ген можно перенести в нужное место и таким образом быстро получить желаемое. То есть ГМО - это направление эволюции в нужное русло, ускорение ее.

Изначальная цель выведения ГМО

Несколько методик можно использовать для того, чтобы создать ГМО-растение. Наиболее популярным сегодня является метод трансгенов. Необходимый ген (например, ген устойчивости к засухе) для этого выделяют в чистом виде из цепочки ДНК. После этого его вносят в ДНК растения, которое нужно модифицировать.

Гены могут браться из родственных видов. В этом случае процесс называется цисгенезом. Трансгенез имеет место тогда, когда ген берется от далеких видов.

Именно о последнем ходят жуткие истории. Многие, узнав о том, что пшеница сегодня существует с геном скорпиона, начинают фантазировать о том, не отрастут ли у тех, кто ее употребляет в пищу, клешни и хвост. Многочисленные неграмотные публикации на форумах и сайтах Сегодня тема ГМО, польза или вред которых муссируются очень активно, не утратила актуальность. Однако это не единственное, чем "специалисты", плохо знакомые с биохимией и биологией, пугают потенциальных потребителей продуктов, содержащих ГМО.

Сегодня такими продуктами договорились называть все, что является генномодифицированными организмами или любые продукты, в которых есть компоненты этих организмов. То есть ГМО-едой будут не только генномодифицированная картошка или кукуруза, но и сосиски, в которые добавлена кроме ливера и ГМО-соя. А вот продукция из мяса коровы, которую кормили пшеницей, содержащей ГМО, не будет считаться таким продуктом.

Действие ГМО на организм человека

Журналисты, не разбирающиеся в таких темах, как генная инженерия и биотехнология, но понимающие востребованность и актуальность проблемы ГМО, запустили утку о том, что, попадая в наш кишечник и желудок, клетки содержащих их продуктов всасываются в кровоток и затем разносятся по тканям и органам, в которых вызывают раковые опухоли и мутации.

Приходится отметить, что этот фантастический сюжет далек от реальности. Любая пища, без ГМО или с ними, в кишечнике и желудке распадается под действием кишечных ферментов, секрета поджелудочной и желудочного сока на составные части, а они являются вовсе не генами и даже не белками. Это аминокислоты, триглицериды, простые сахара и жирные кислоты. Все это на разных участках ЖКТ затем всасывается в кровоток, после чего расходуется на различные цели: для получения энергии (сахара), как строительный материал (аминокислоты), для запасов энергии (жиры).

Например, если взять генномодицифированный организм (допустим, ставшее похожим на огурец уродливое яблоко), то оно будет спокойно пережевано и разложено на составные части таким же образом, как и любое другое без ГМО.

Прочие ГМО-страшилки

Другая байка, не менее леденящая душу, касается того, что в встраиваются трансгены, что приводит к страшным последствиям вроде бесплодия и рака. Впервые в 2012 году французы написали про рак у мышей, которым давали генномодифицированное зерно. На самом деле Жилем-Эриком Сералини, руководителем эксперимента, была сделана выборка, состоящая из 200 крыс Спрег-Доули. Из них треть кормили ГМО-зерном кукурузы, другую треть - обработанной гербицидом генномодифицированной кукурузой, а последнюю - обычными зернами. В итоге крысы женского пола, употреблявшие в пищу генетически модифицированные организмы (ГМО) дали в течение двух лет рост опухолей в 80 %. Самцы же заработали на таком питании почечные и печеночные патологии. Характерно, что на обычном питании треть животных также погибла от различных опухолей. Данная линия крыс вообще склонна к внезапному появлению опухолей, не связанному с характером питания. Поэтому чистоту эксперимента можно считать сомнительной, и его признали несостоятельным и ненаучным.

Аналогичные изыскания проводились и ранее, в 2005 году, в нашей стране. ГМО в России изучала биолог Ермакова. Она представила на конференции в Германии доклад о высокой смертности получавших ГМО-сою мышат. Подтвержденное в научном эксперименте заявление после этого начало распространяться по всему миру, доводя молодых мам до истерики. Ведь им приходилось кормить искусственными смесями своих малышей. А в них использовалась соя ГМО. Пять экспертов Nature Biotechnology в дальнейшем сошлись во мнении о том, что результаты российского эксперимента являются неоднозначными, и его достоверность не признали.

Хочется добавить, что даже если кусок чужеродной ДНК окажется в кровотоке человека, то эта генетическая информация никаким образом не встроится в организм и не приведет ни к чему. Конечно, в природе существуют случаи встраивания в чужеродный организм кусков генома. В частности, некоторые бактерии таким образом портят генетику мух. Однако подобные феномены не были описаны у высших животных. К тому же генетической информации и в продуктах без ГМО хоть отбавляй. И если они не встраивались в генетический материал человека до сих пор, то можно и дальше спокойно есть все, что усваивает организм, в том числе содержащее ГМО.

Польза или вред?

"Монсанто", американская компания, уже в 1982 году на рынок вывела генетически модифицированные продукты: сою и хлопок. Ей также принадлежит авторство убивающего всю растительность, за исключением генномодифицированной, гербицида "Раундап".

В 1996 году, когда продукты фирмы "Монсанто" были выброшены на рынки, корпорации, конкурирующие с ней, для спасения доходов начали широкомасштабную кампанию, цель которой заключалась в ограничении оборота содержащих ГМО продуктов. Первым в гонениях отметился Арпад Пуштаи, британский ученый. Он кормил ГМО-картошкой крыс. Правда, впоследствии эксперты все выкладки этого ученого разнесли в пух и прах.

Потенцальный вред для россиян от ГМО-продуктов

Никто не скрывает, что на засеянных ГМО-зерновыми землях никогда больше не растет ничего, кроме их самих. Связано это с тем, что сорта хлопчатника или сои, устойчивые к гербицидам, не морятся ими. их можно распылять, добиваясь вымирания всей остальной растительности.

Глифосфат - это самый распространенный гербицид. Он распыляется вообще-то еще до созревания растений и быстро в них разлагается, не сохраняясь в почве. Однако устойчивые ГМО-растения позволяют его использовать в огромных количествах, что повышает риски накопления глифосфата в ГМО-растительности. Также известно, что этот гербицид вызывает разрастание костной ткани и ожирение. А в Латинской Америке и США что-то многовато людей, страдающих лишним весом.

Лишь на один посев рассчитаны многие ГМО-семена. То есть потомства не даст то, что из них вырастет. Скорее всего, это коммерческая уловка, поскольку таким образом сбыт ГМО-семян повышается. Модифицированные растения, дающие следующие поколения, прекрасно существуют.

Поскольку искусственные мутации генов (например, у сои или картофеля) могут повышать аллергенные свойства продукции, часто говорят о том, что ГМО являются мощными аллергенами. А вот лишенные привычных белков некоторые сорта арахиса не вызывают аллергию даже у тех, кто мучился ею раньше именно на этот продукт.

Из-за особенностей могут сокращать количество прочих сортов своего вида. Если на двух участках, расположенных рядом, посадить обычную пшеницу и пшеницу-ГМО, существует риск, что обычную вытеснит модицифированная, опыляя ее. Однако вряд ли кто-то дал бы им расти рядом.

Отказавшись от своих собственных посевных фондов и используя лишь ГМО-семена, в особенности одноразовые, государство в конце концов окажется в продовольственной зависимости от фирм, являющихся держателями семенного фонда.

Конференции с участием Роспотребнадзора

После того как во всех СМИ были многократно растиражированы страшилки и байки о ГМО-продуктах, Роспотребнадзор поучаствовал во многих конференциях по этому вопросу. На конференции в Италии, состоявшейся в марте 2014 года, его делегация участвовала в технических консультациях по низкому содержанию в товарообороте России генетически модифицированных организмов. Сегодня, таким образом, принят был курс на практически полное недопущение на продовольственный рынок нашей страны такой продукции. Также было отсрочено применение в сельском хозяйстве ГМО-растений, хотя использование ГМО-семян планировалось начать еще в 2013 году (постановление правительства от 23 сентября 2013 года).

Штрих-код

Еще дальше пошло Министерство образования и науки. Оно предложило использовать штрих-код, заменяющий пометку "Не содержит ГМО", в России. В нем должна содержаться вся информация о содержащейся в продукте генной модификации либо о ее отсутствии. Хорошее начинание, однако без специального устройства считать этот штрих-код будет невозможно.

Генномодифицированные продукты и закон

ГМО регламентируются законом в некоторых государствах. В Европе, например, содержание их в продуктах не допускается более 0,9 %, в Японии - 9 %, в США - 10 %. В нашей стране продукция, в которой содержание ГМО превышает 0,9 %, подлежит обязательному маркированию. За нарушение этих законов предприятиям грозят санкции, вплоть до прекращения деятельности.

Вывод

Вывод из всего этого можно сделать следующий: проблема ГМО (польза или вред от использования содержащих их продуктов) сегодня явно раздута. Неизвестны реальные последствия долговременного использования таких продуктов. На сегодняшний день авторитетных научных экспериментов по этому вопросу не проведено.

В последнее время в прессе и на телевидении часто обсуждают вопросы, связанные с генетически модифицированными растениями и потенциальным риском употребления продуктов питания, изготовленных из них. К сожалению, в таких дискуссиях часто побеждают эмоции, а не научная логика. Как результат в обществе возникает настороженное отношение к генетически модифицированным растениям и даже своеобразный «экологический терроризм». Когда в конце 1990-х из Германии в Юго-Восточную Азию хотели отправить партию генетически модифицированного риса, «зелёные» пошли на захват самолёта (!) и уничтожили всю партию семян. Прошлым летом в Австралии на территорию одного из научных центров проникли те же «зелёные террористы» и уничтожили посевы трансгенной пшеницы, над которыми исследователи работали около 10 лет. Эта акция отбросила назад исследования пшеницы и нанесла научному центру убытки, которые исчисляются миллионами долларов.

Это, конечно же, крайние проявления. Но каждого современного человека беспокоит вопрос: нужно ли бояться генетически модифицированных растений? Что они несут миру: пользу или вред? Однозначного ответа не существует. И с каждым конкретным случаем применения ГМО нужно разбираться отдельно.

Какие же проекты с участием трансгенных растений человечество разрабатывает сегодня?

Устойчивость к вредителям

Насекомые-вредители при вспышках численности могут уничтожать существенную часть урожая (если не весь урожай). Для борьбы с ними применяют довольно агрессивные вещества - пестициды (от лат. pestis - вредоносный бич, зараза и caedo - убивать). Пестициды уничтожают и вредных, и полезных насекомых (например пчёл, шмелей, жужелиц), оказывают влияние на почвенных обитателей, а при попадании в водоёмы пестициды могут вызвать гибель рыб. Применение пестицидов опасно в первую очередь для людей, работающих в сельском хозяйстве: именно они готовят растворы, проводят опрыскивания, работают в поле, пока пестицид продолжает действовать. К нам на стол попадает лишь ничтожная часть пестицидов, которые по большей части уже разложились. Избавиться от остатков пестицидов можно, тщательно вымыв овощи и фрукты или очистив кожицу.

Отказаться от применения пестицидов пока ещё нельзя: тогда размножатся вредители и человечество останется без урожая. А нельзя ли сделать культурные растения несъедобными для насекомых?

Здесь на помощь приходит генная инженерия растений. Насекомые, как и любые другие живые существа, болеют. Одно из заболеваний вызывает бактерия тюрингская палочка (Bacillus thuringiensis ). Она выделяет белок-токсин, нарушающий пищеварение у насекомых (но не у теплокровных животных!). Этот белок обозначают BT-токсин (от первых букв латинского названия тюрингской палочки). Дальше необходимо выделить ген, отвечающий за синтез ВТ-токсина, включить его в состав искусственного Т-района ДНК, размножить плазмиду в кишечной палочке, дальше перенести плазмиду в агробактерию с плазмидой-хелпером (об использовании агробактерий для генетической модификации растений - см. «Потенциал» №11). Т-район из агробактерии внедрится в геном растения (например, хлопчатника). На искусственной среде с антибиотиками можно отобрать трансформированные клетки и получить из них генетически модифицированные растения (рис. 6). Теперь в хлопчатнике будет синтезироваться ВТ-токсин, и он станет устойчивым к вредителям.

Вредители хлопчатника - актуальная проблема для тропических регионов. Так, вспышки численности хлопкового долгоносика в XIX–XX вв. были одной из причин экономических спадов в США. С 1996 года на поля внедряется генетически модифицированный хлопчатник, устойчивый к насекомым (в частности - к хлопковому долгоносику). В Индии - одной из лидирующих стран-производителей хлопка - на сегодня около 90% площадей заняты генетически модифицированным хлопком. Так что 9 шансов из 10, что вы уже носите «генетически модифицированные» джинсы! Как-то об этом в дискуссиях по ГМО не упоминают...

Заманчиво получить не только технические, но и пищевые растения, устойчивые к вредителям (например, картофель, устойчивый к колорадскому жуку). Это позволит фермерам существенно сократить расходы на обработку полей пестицидами и повысит урожай. Для того чтобы получить больше прибыли, ГМО, безусловно, необходимы. В нашей стране уже есть официальное разрешение на использование 4 сортов картофеля, устойчивого к колорадскому жуку: два сорта «наши», и два - иностранного происхождения. Но действительно ли такой картофель безопасен?

Появление в пище любого нового белка (например, ВТ-токсина) у чувствительных людей может вызывать аллергию, снижение общего иммунитета к заболеваниям и другие реакции. Но этот эффект возникает при любом изменении традиционного рациона. Например, все те же явления возникали просто при «внедрении» соевого белка: для европейцев он оказался потенциальным аллергеном, снижал иммунитет. То же самое будет с людьми, переезжающими на новое место, резко отличающееся по традициям питания. Так, для коренных народов Крайнего Севера опасной может оказаться молочная диета или питание обычным (заметим - нисколько не модифицированным!) картофелем. Русские бобы (Vicia faba ), которые традиционно использовали у нас в стране как овощ, ядовиты для жителей Средиземноморья и т. д. Всё это не означает, что нужно повсеместно бороться с употреблением сои, молока, картофеля или бобов, просто необходимо учитывать индивидуальную реакцию.

Таким образом, при внедрении генетически модифицированных пищевых растений часть людей окажется к ним довольно чувствительной, но другие так или иначе приспособятся. Но чувствительные люди должны точно знать, какие продукты приготовлены с применением ГМО.

Полезно знать, что сегодня в Россию можно ввозить и использовать в пищевых технологиях 16 сортов и линий генетически модифицированных растений - в основном устойчивых к тем или иным вредителям. Это кукуруза, соя, картофель, сахарная свёкла, рис. От 30 до 40% продуктов на современном рынке уже содержат компоненты, полученные из ГМО. Парадоксально, что при этом выращивать генетически модифицированные растения у нас в стране не разрешается.

В утешение скажем, что в США - стране, которая выращивает 2/3 мирового урожая генетически модифицированных растений - до 80% продуктов содержат ГМО!

Устойчивость к вирусам

Поражение растений вирусами уменьшает урожай в среднем на 30% (рис. 7). Для некоторых культур цифры потерь ещё выше. Так, при заболевании ризоманией теряется 50–90% урожая сахарной свёклы. Корнеплод мельчает, образует многочисленные боковые корни, содержание сахара снижается. Это заболевание впервые было обнаружено в 1952 году в Северной Италии и оттуда «победным маршем» в 1970-х гг. распространилось во Францию, на Балканский полуостров, а в последние годы - в южные регионы свеклосеяния нашей страны. Против ризомании не помогают ни химическая обработка, ни севооборот (вирус сохраняется в почвенных организмах не менее 10 лет!).

Ризомания - это всего лишь один пример. С развитием транспорта вирусы растений вместе с урожаем быстро перемещаются по планете, минуя таможенные барьеры и государственные границы.

Единственным эффективным способом борьбы со многими вирусными болезнями растения оказывается получение устойчивых генетически модифицированных растений. Для повышения устойчивости из генома вируса-возбудителя ризомании выделяют ген белка капсида. Если этот ген «заставить» работать в клетках сахарной свёклы, то резко повышается устойчивость к «ризомании».

Есть и другие проекты, связанные с повышением устойчивости к вирусам. Например, огурцы, дыни, арбузы, кабачки и тыква поражаются одним и тем же вирусом мозаики огурца. Кроме того, в круг хозяев входят томаты, салат-латук, морковь, сельдерей, многие декоративные и сорные растения. Бороться с вирусной инфекцией очень трудно. Вирус сохраняется на многолетних растениях-хозяевах и на остатках корневой системы в почве.

Как и в случае с ризоманией, против вируса мозаики огурца помогает образование белка его собственного капсида в растительных клетках. На сегодня получены устойчивые к вирусу трансгенные растения огурцов, кабачков и дыни.

Ведутся работы и по повышению устойчивости к другим вирусам сельскохозяйственных растений. Но пока ещё, за исключением сахарной свёклы, устойчивые генетически модифицированные растения мало распространены.

Устойчивость к гербицидам

В развитых странах расходам на горюче-смазочные материалы все больше предпочитают «разориться» на разнообразные химикаты. Одна из важных статей расходов - вещества, уничтожающие сорняки (гербициды ). Применение гербицидов позволяет лишний раз не гонять тяжёлую технику по полю, меньше нарушается структура почвы. Слой отмерших листьев создаёт своеобразную мульчу, которая уменьшает эрозию почвы и сберегает влагу. Сегодня разработаны гербициды, которые в течение 2–3 недель полностью разлагаются в почве микроорганизмами и практически не наносят вреда ни животным, обитающим в почве, ни насекомым-опылителям.

Однако у гербицидов сплошного действия есть существенный недостаток: они действуют не только на сорные, но и на культурные растения. Есть определённый успех в создании так называемых селективных гербицидов (таких, которые действуют не на все растения, а на какую-то группу). Например, есть гербициды против двудольных сорняков (см. в статье об ауксинах, «Потенциал» №7). Но при помощи селективных гербицидов невозможно уничтожить все сорняки. Например, останется пырей - злостный сорняк из семейства злаковых.

И тогда возникла идея: сделать культурные растения устойчивыми к гербицидам сплошного спектра действия! Благо, у бактерий есть гены, отвечающие за разрушение многих гербицидов. Достаточно просто пересадить их в культурные растения. Тогда вместо постоянных прополок и рыхления междурядий над полем можно распылить гербицид. Культурные растения выживут, а сорняки погибнут.

Именно такие технологии предлагают фирмы, производящие гербициды. Причём выбор трансгенных семян культурных растений зависит от того, какой гербицид фирма предлагает на рынке. Каждая фирма разрабатывает растения-ГМО, устойчивые к своему гербициду (но не к гербицидам конкурентов!). Ежегодно в мире на полевые испытания передают 3–3,5 тыс. новых образцов растений, устойчивых к гербицидам. Даже испытания устойчивых к насекомым растений отстают от этого показателя!

Устойчивость к гербицидам уже широко применяется при выращивании люцерны (кормовая культура), рапса (масличное растение), льна, хлопчатника, кукурузы, риса, пшеницы, сахарной свёклы, сои.

Традиционный вопрос: опасно или безопасно выращивание таких растений? Технические культуры (хлопок, лён), как правило, не обсуждают: их продукты человек не использует в пищу. Конечно, в генетически модифицированных растениях появляются новые белки, которых прежде не было в пище человека, со всеми вытекающими отсюда следствиями (см. выше). Но есть ещё одна скрытая опасность. Дело в том, что применяемый в сельском хозяйстве гербицид - это не химически чистое вещество, а некоторая техническая смесь. В неё могут добавлять детергенты (для улучшения смачивания листьев), органические растворители, промышленные колоранты и другие вещества. Если содержание гербицида в конечном продукте строго контролируют, то за содержанием вспомогательных веществ, как правило, следят плохо. Если содержание гербицида будет сведено к минимуму, то о содержании вспомогательных веществ остаётся только догадываться. Эти вещества могут попадать также в растительное масло, крахмал и другие продукты. В будущем предстоит разрабатывать нормативы на содержание этих «неожиданных» примесей в конечных продуктах.

Суперсорняки и «утечка генов»

Успехи в создании генетически модифицированных растений, устойчивых к вредителям и гербицидам, породили ещё одно сомнение: а вдруг сорняки каким-то образом «завладеют» генами, встроенными в геном культурных растений, и станут устойчивыми ко всему? Тогда появится «суперсорняк», который будет невозможно истребить ни с помощью гербицидов, ни с помощью насекомых-вредителей!

Такой взгляд по меньшей мере наивен. Как мы уже говорили, фирмы-производители гербицидов создают растения, устойчивые к производимому гербициду, но не к гербицидам конкурентов. Даже в случае приобретения одного из генов устойчивости можно использовать другие гербициды для борьбы с «суперсорняком». Устойчивость к насекомым ещё не определяет устойчивости к любым вредителям. Например, нематоды и клещи смогут по-прежнему поражать это растение.

Кроме того, остаётся неясным, каким образом сорняк приобретёт гены от культурного растения. Единственная возможность - если сорное растение является близким родственником культурному. Тогда возможно опыление пыльцой генетически модифицированного растения, и произойдёт «утечка генов». Это особенно актуально в районах древнего земледелия, где в дикой природе до сих пор обитают виды растений, близкие к культурным. Например, из трансгенного рапса с пыльцой новые гены могут переноситься на сурепку или дикие виды рода Капуста (Brassica ).

Гораздо важнее, что посадки трансгенных растений вызывают «загрязнение» местного генетического материала. Так, кукуруза относится к ветроопыляемым растениям. Если один из фермеров посадил трансгенный сорт, а его сосед - обычный, возможно переопыление. Гены из генетически модифицированного растения могут «утечь» на соседнее поле.

Верно и обратное: растения-ГМО могут опыляться пыльцой обычных сортов, и тогда в следующих поколениях уменьшится доля генетически модифицированных растений. Это произошло, например, в Австралии при первых попытках внедрить генетически модифицированный хлопчатник: признак устойчивости к насекомым «пропал» из-за «разбавления» пыльцой обычных сортов с соседних полей. Пришлось более внимательно отнестись к семеноводству хлопчатника и внедрять устойчивые сорта ещё раз.