Для чего нужна калибр-пробка гладкая. Типы калибров и область их применения Калибр пробка проход непроход

Калибрами называются бесшкальные контрольные инструменты, предназначенные для ограничения отклонений размеров, формы и взаимного расположения поверхностей изделий. Контроль калибрами не позволяет определить действительных отклонений размеров изделия, но позволяет установить — находятся или нет отклонения размеров изделия в заданных пределах.

Калибры были одним из первых измерительных инструментов, применяемых при изготовлении механизмов, главным образом сопрягаемых деталей, например, вала и втулки, винта и гайки. Так возникло понятие взаимозаменяемости «по вхождению», достигаемой на базе применения так называемых нормальных калибров. К такому калибру, изготовленному как точный образец одной из деталей пары, подгонялась как можно точнее вторая деталь этой пары. Такая процедура всегда обеспечивала собираемость любой пары деталей, но имела существенный недостаток, проистекающий из неопределенности и субъективности условия «как можно точнее». Качество изделия и соединения, эффективность его функционирования при дальнейшей эксплуатации нельзя было достоверно установить. Так, при подгонке валов и отверстий под нормальные калибры всегда достигалась собираемость подшипников скольжения, но толщина масляной пленки в зазоре могла колебаться в неизвестных пределах. Болты с гайками также всегда свинчивались, но прочность этого соединения была непредсказуемой. Таким образом, размерная взаимозаменяемость еще не была функциональной.

На рубеже XX в. Произошел рост серийного и массового производства на базе полного расчленения операций и конвейеризации. Здесь и родилась взаимозаменяемость в ее широком понимании как принцип организации производства изделий на базераздельного изготовления входящих в это изделие деталей с выполнением их размеров в таких пределах, которые при произвольном сочетании деталей на сборке обеспечивают удовлетворение функциональных требований к узлу.

Разность двух предельных размеров для данной детали получила название допуска. Один из этих размеров, соответствующий максимуму материала детали, получил название проходного предела, а другой, соответствующий минимуму — непроходного предела. Эти названия отражают порядок использования калибров, для контроля указанных пределов. Заметим, что фактически проходной предел представляет собой размер, который ранее проверялся нормальным калибром. Для контроля деталей по второму предельному размеру был введен второй калибр. Вместе, с первым калибром, обеспечивающим собираемость, получается пара калибров, соответствующая допуску на деталь.

Принцип нормирования и контроля по максимуму и минимуму материала отражен в ГОСТ Р 53090-2008 (ИСО 2693:2006 «Основные нормы взаимозаменяемости. Характеристики изделий геометрические. Требования максимума материала, минимума материала и взаимодействия»).

Очевидно, что при взаимозаменяемом производстве каждую деталь в изделии можно заменить любым другим ее экземпляром, как на сборке, так и при ремонте. Отсюда и возник, термин «взаимозаменяемость», отражающий здесь узкое значение этого понятия.

Введение понятия «допуск» внесло четкость и определенность в. производство, обеспечило возможность объективной оценки качества деталей и ритмичность технологического процесса. Взаимоотношения изготовителя и потребителя получили прочную правовую основу, необходимо было лишь нормировать процедуру арбитражной проверки годности деталей, проверки того, что их размеры лежат в поле допуска.

Так как никаких других измерительных средств еще не было, то для определения соблюдения установленного допуска детали заменили один нормальный калибр на два предельных калибра.

Как уже отмечалось, калибры служат не для определения действительного размера деталей, а для рассортировки их на годные и две группы брака (с которых снят не весь припуск и с которых снят лишний припуск). Иногда с помощью калибров детали сортируют на несколько групп годных для последующей селективной сборки.

В зависимости от вида контролируемых изделий различают калибры для проверки гладких цилиндрических изделий (валов и отверстий), гладких конусов, цилиндрических наружных и внутренних резьб, конических резьб, линейных размеров, зубчатых (шлицевых) соединений, расположения отверстий, профилей и др.

Предельные калибры делятся на проходные и непроходные. При контроле годной детали проходной калибр (ПР) должен входить в годное изднлие, а непроходной (НЕ) входить в годное изднлие не должен. Изделие считается годным, если проходной калибр входит, а непроходной — нет. Проходной калибр отделяет годные детали от брака исправимого (это детали, с которых снят не весь припуск), а непроходной — от брака неисправимого (это детали, с которых снят лишний припуск).

По технологическому назначению калибры делятся на рабочие калибры, используемые для контроля изделий в процессе изготовления и приемки готовых изделий работниками ОТК и контрольные калибры (контркалибры) для проверки рабочих калибров.

По числу контролируемых элементов различают комплексные калибры, контролирующие одновременно несколько элементов изделия (например, резьбовой проходной калибр) и простые (элементные) калибры, проверяющие один элемент (размер) изделия.

По характеру контакта с изделием различают калибры с поверхностным контактом (пробка), с линейным контактом (скоба) и точечным контактом (нутромер). Характер контакта имеет существенное влияние на результаты контроля при наличии отклонений формы изделия.

По конструктивным признакам различают калибры однопредельные с раздельным выполнением проходного и непроходного калибров, двухпредельные (односторонние и двухсторонние), представляющие конструктивное объединение проходного и непроходного калибров.

Так калибры для контроля отверстий представляют собой пробки, а для контроля валов — скобы или кольца. Контркалибры-пробки служат для контроля рабочих калибров-скоб. Контркалибров-скоб не бывает. Это объясняется следующими двумя причинами. Во-первых, допуск изготовления калибра должен быть в несколько раз меньше допуска контролируемой детали. А допуск контркалибра, являющегося калибром по отношению к рабочему калибру, должен быть еще меньше. Таким образом, изготовление контркалибров-скоб с их весьма малыми допусками было бы задачей весьма непростой. Во-вторых, рабочие калибры-пробки нетрудно измерять универсальными приборами. В этом отношении калибры-пробки, т.е. калибры с наружными измерительными поверхностями, выгодно отличаются от калибров-скоб, имеющих внутренние плоские измерительные поверхности: производить внутренние измерения плоских параллельных поверхностей с высокой точностью значительно сложней.

При конструировании предельных калибров следует исходить из принципа подобия (принципа Тейлора), согласно которому проходной калибр должен быть подобен детали, сопрягаемой с контролируемой, и должен контролировать всю поверхность на длине сопряжения (поверхностный контакт), а непроходной калибр должен проверять каждый размер отдельно, обеспечивая точечный контакт с деталью.

Соблюдение принципа подобия позволяет выявлять при проверке калибрами нарушения пределов допуска, вызванные отклонением формы или взаимного расположения элементов поверхности. Например, проходной калибр для гладкого отверстия должен выполняться в виде цилиндрической пробки. Такой калибр войдет в проверяемое отверстие только в том случае, если диаметр отверстия во всех сечениях и направлениях больше диаметра калибра. Непроходной калибр должен выполняться с точечным контактом (нутромер), чтобы иметь возможность проверить диаметры отверстия в различных сечениях и направлениях с целью обнаружения местных увеличений диаметра отверстия.

Эти требования в ряде случаев полностью или в значительной мере осуществимы: пробки ПР малых и средних размеров изготовляются полными, пробки НЕ средних и больших размеров - неполными. Пробки ПР обычно длиннее пробок НЕ. В других случаях требования, связанные с принципом Тейлора, вступают в противоречие с требованиями износостойкости калибров и их удобного для эксплуатации веса. С точки зрения износостойкости калибра полный поверхностный контакт лучше частичного, последний лучше линейного, а линейный — точечного. В связи с этим пробки НЕ малых размеров — полные. По мере возрастания контролируемых диаметров естественно возрастает и вес калибров. Для его ограничения полные калибры-пробки, в том числе и проходные, заменяют неполными пробками и нутромерами, дающими уже контакт только на двух участках поверхности (цилиндрические нутромеры) или в двух точках (сферические).

Приведенная краткая классификация калибров не является исчерпывающей, так как она охватывает только наиболее распространенные виды калибров и классифицирует их лишь по основным признакам. Независимо от типа и назначения калибров к ним предъявляются следующие основные требования:

  1. Точность изготовления. Рабочие размеры калибра должны быть выполнены в соответствии с допусками на его изготовление.
  2. Высокая жесткость при малом весе. Жесткость необходима для уменьшения погрешностей от деформаций калибров (особенно скоб больших размеров) при измерении. Малый вес требуется для повышения чувствительности контроля и облегчения работы контролера при проверке средних и больших размеров.-
  3. Износоустойчивость. Для снижения расходов на изготовление и периодическую проверку калибров необходимо принимать меры к повышению их износоустойчивости. Измерительные поверхности калибров выполняют из легированной стали, закаливают до высокой твердости и покрывают износостойким покрытием (например, хромируют). Выпускают также калибры небольших размеров, изготовленные из твердого сплава.
  4. Производительность контроля обеспечивается рациональной конструкцией калибров; по возможности следует применять односторонние предельные калибры.
  5. Стабильность рабочих размеров достигается соответствующей термообработкой (искусственным старением).
  6. Устойчивость против коррозии, необходимая для обеспечения сохранности калибров, достигается применением антикоррозионных покрытий и выбора материалов, мало подверженных коррозии.

Все калибры маркируют. Маркировка содержит номинальный размер и числовые величины предельных отклонений. Маркировку наносят на нерабочих поверхностях калибра и на ручке.

Следует отметить, что долгое время калибры очень широко применялись на машиностроительных заводах, потому что не было других измерительных инструментов, пригодных для быстрого контроля в цеховых условиях. Была разработана конструкция калибров и нормативные документы, охватывающих обширную номенклатуру калибров-пробок, калибров-скоб, калибров-втулок для контроля валов, отверстий, конусов и резьбовых изделий. Калибры выпускались в большом количестве централизовано инструментальными заводами и потребителями для собственных нужд.

Однако, для организации машиностроите6льного производства калибры чрезвычайно неудобный инструмент. На инструментальных складах заводов хранились сотни, а иногда и тысячи калибров, так как каждый калибр годен для контроля только одного размера на детали. Кроме того, держали контркалибры для проверки годности калибров. Калибры быстро изнашивались, иногда в течение одной смены, и их приходилось ремонтировать. Также следует иметь в виду, что калибры только сортировали изготовленные детали на годные и брак, но не определяли их действительные размеры. Калибры мало пригодны для настройки станков, так как не показывают размер детали.

Поэтому с появлением пневматических, а позднее электронных измерительных приборов, контрольных приспособлений и приборов активного контроля применение калибров на производстве стало быстро сокращаться. И в настоящее время калибры применяют лишь в некоторых ограниченных случаях, когда контроль размеров изделий затруднен, например, при контроле валов и отверстий малого диаметра, при контроле резьбовых деталей и др.

Калибры гладкие для контроля валов и отверстий

Рабочие калибры различают однопредельные (с проходной или с непроходной стороной) и двупредельные (сочетающие проходную и непроходную стороны). Среди двупредельных калибров различают односторонние (проходная и непроходная стороны расположены последовательно друг за другом на одном конце калибра) и двусторонние (проходная и непроходная стороны расположены на противоположных сторонах калибра).

У калибров могут быть вставки или насадки, изготовленные из износостойкого материала (например, твердого сплава). Пробки для больших размеров могут быть выполнены в виде стержня с цилиндрическими или сферическими торцовыми измерительными поверхностями.

Рабочие проходные калибры-пробки и скобы имеют допуск на изготовление, которому должны соответствовать размеры новых калибров, и допуск на износ,

устанавливающий допускаемое отклонение калибра при его износе.

Допуск на износ обеспечивает продолжительный срок службы рабочих проходных калибров. Рабочие непроходные калибры изнашиваются медленнее и допуска на износ не имеют.

Погрешности формы измерительных поверхностей калибров не должны выходить за пределы поля допуска на неточность изготовления калибров по рабочим размерам.

Исполнительными размерами калибров называются предельные размеры, по которым изготовляют новые калибры и проверяют износ калибров, находящихся в эксплуатации. Для пробок указывают наибольший предельный размер и допуск на изготовление «в минус», для скоб — наименьший предельный размер с допуском. Для рабочих проходных калибров дополнительно указывают предельный размер изношенного калибра. Исполнительные размеры калибров, допуски и их расположение подробно разработаны в ГОСТах и международных стандартах.

Рисунок 1. Пример расположения полей допусков калибра

В этих материалах приведены схемы расположения допусков калибров (Рисунок 1) и формулы для расчета предельных размеров и допусков, а также подробные таблицы предельных размеров и отклонений.

Наибольшее значение для точности контроля с помощью калибров имеет расположение поля допуска калибра относительно поля допуска проверяемой детали.

Причем в данном случае несущественно, контролируется вал или отверстие и является ли калибр проходным или непроходным. Размер калибра всегда меньше предельного размера проверяемой детали. При этом, очевидно, калибр будет сортировать все детали на две группы: годные и брак. Однако такая сортировка будет явно не идеальной.

Если размер калибра находится в пределах поля допуска детали, то детали с размерами, находящимися в интервале между предельным размером детали и размером калибра, будучи годными, попадут в брак («ложнобракованные»).

Если размер калибра находится вне поля допуска детали, то детали с размерами, находящимися в интервале между предельным размером детали и размером калибра, будучи браком, будут приняты как годные («ложногодные»).

Следует отметить, что наличие у калибра своего допуска неизбежно вызывает либо две перечисленные неприятности, либо одну из них. Если поле допуска калибра находится полностью в пределах поля допуска детали, то напрасно бракуется какая-то доля годных деталей. Если поле допуска калибра находится вне поля допуска детали, то часть бракованных деталей проникает в годные. И, наконец, если поле допуска калибра располагается по обе стороны от предельного размера детали, то имеют место оба перечисленные выше нежелательные явления. Избавиться от обоих этих явлений одновременно принципиально невозможно, можно лишь уменьшить, одну долю неправильно рассортированных деталей (или даже вовсе избавиться от нее) за счет увеличения другой доли. Очевидно, достичь этого можно путем соответствующего смещения поля допуска калибра относительно предельного размера детали. Можно, правда, поставить вопрос о сокращении доли всех неправильно рассортированных деталей путем уменьшения допуска-калибра, что рассмотрено ниже.

На практике трудный вопрос (что хуже: направлять брак в годные или годные в брак) часто решается компромиссом: поле допуска калибра частично находится в поле допуска детали, а частично вне его. У калибров НЕ имеет место располовинивание, т. е. поле допуска калибра располагается симметрично предельному размеру детали. У калибров ПР расположение зависит от точности деталей. Для точных и дорогих деталей, где особенно нежелательна напрасная их браковка при контроле, поле допуска калибра (разумеется, с учетом его износа) частично выносится за поле допуска детали. Для более грубых деталей такого выноса не делают, что в условиях достаточно широких допусков практически не ущемляет интересы изготовителя.

Выше уже указывалось, что уменьшение допуска калибра уменьшает обе доли неправильно рассортированных деталей. Однако при уменьшении допуска калибра этот калибр удорожается и сокращается срок его службы.
Следует отметить, что точно так же влияет погрешность измерения прибором на правильность рассортировки деталей. Причем предельная погрешность измерения играет роль, в какой-то мере сходную с допуском калибра.

Рассмотрим более подробно вопросы расположения полей допусков калибров относительно полей допусков контролируемых деталей зависит от квалитета точности деталей и от их размеров. Причем поле допуска калибров ПР состоит из двух частей: поля допуска изготовления (регламентирующего новый калибр) и поля допуска на износ.

Специфика полей допусков калибров для размеров, например, свыше 180 мм состоит в том, что они сдвинуты к середине поля допуска детали. Такое смещение за счет изготовителя можно объяснить тем, что при больших размерах и соответственно более широких допусках это не приводит к заметным дополнительным трудностям при изготовлении деталей. ГОСТ … дает общие формулы и таблицы, позволяющие рассчитывать исполнительные размеры конкретных рабочих и контрольных калибров, однако для практического удобства выпущен ГОСТ 21401 - «Калибры гладкие для размеров до 500 мм. Исполнительные размеры», охватывающий рабочие калибры ПР и НЕ.

Допуски формы рабочих калибров заданы по квалитетам точности 1—5, а контркалибров — по квалитетам 1—2, при этом допуски формы всех калибров существенно меньше их допусков на размер, особенно калибров к деталям менее точных квалитетов. Это увеличивает износостойкость и срок службы калибров. Кроме того, повышается степень однозначности ответа (годная деталь или нет) при повторном контроле детали тем же калибром, когда случайное сочетание отклонений формы детали и калибра может в каких-то случаях привести к разным ответам (например, вхождение или не вхождение вследствие взаимного углового поворота детали и калибра вокруг оси).

Следует отметить, что расположение полей допусков средств измерений в том числе калибров отражено в международном стандарте ISO 14253-1, относящемся к серии стандартов “Геометрическая спецификация продукции (GPS)”, установлены “Правила установления соответствия или несоответствия спецификациям”.

Важное метрологическое и эксплуатационное значение имеет усилие введения пробки в деталь или надевания скобы на нее.

При проверке размеров изделий рабочими калибрами проходные калибры должны свободно проходить под действием собственного веса или усилия примерно равного ему, а непроходные не должны входить в изделие более чем на длину, равную сумме размеров фасок изделия и калибра.

Чрезмерное усилие особенно недопустимо для скоб с неограниченной жесткостью. Такое усилие вызывает не только проникновение бракованных деталей в годные, но и ускоренный износ калибров. Практическое правило введения калибра под действием его силы тяжести для скоб — при горизонтальной оси контролируемой

детали (отметим, что и при этом происходят деформации) пригодно лишь в первом приближении и только для средних размеров. Для малых размеров сила тяжести калибра недостаточна, для больших — чрезмерна. Поэтому в общем случае рекомендуется регламентировать это усилие.

Другая погрешность контроля калибрами связана с их тепловыми деформациями. При нагревании скоб руками контролера возникает погрешность, составляющая существенную часть в общей погрешности контроля, тем большую, чем больше скобы. Если же обеспечивается надежная изоляция от тепла рук, то происходит и заметное уменьшение погрешности. У стандартных скоб для диаметров, начиная с 10 мм, предусмотрены пластмассовые накладки.

Измерительные поверхности калибров изготовляются из стали, закаленной до твердости HRC60—64. Измерительные поверхности калибров подвергают хромовому износоустойчивому покрытию. Кроме того, для изготовления калибров применяют твердые сплавы, повышающие стойкость калибров в несколько раз. Однако и при этом невыгодные условия работы калибров, определяемые спецификой их использования (трение), высокая производительность контроля приводит к ускоренному износу калибров. Факторами, влияющими на износ, являются диаметр и материал детали, ее твердость, прерывистость ее поверхности.

Калибры для контроля отверстий и валов небольшого диаметра

Как было показано выше для контроля валов и отверстий среднего и большого диаметра, например, размером от 30 до 500 мм калибры изготавливают по заказу и по одной штуке для каждого размера.

Однако для измерения отверстий диаметром от 0,5 до 10 мм выпускают наборы универсальных калибров-пробок с шагом 0,1; 1,0; 2,0 и 10,0 мкм.

Допуск на диаметр составляет ±0,4 мкм. Длина рабочей части пробок составляет от 1,0 до 50 мм. Шероховатость поверхности Ra менее 0,1 мкм. Калибры-пробки изготовлены из легированной стали и закалены до твердости HRC=60-62 и из твердого сплава.

Для измерения валов диаметром от 0,06 до 30 мм выпускают калибры-кольца с шагом размера 1,0 мкм. Допуск на диаметр составляет ±1,25 мкм. Калибры-пробки изготовлены из легированной стали и закалены до твердости HRC=60-62 и из твердого сплава. Калибры-кольца выпускают по международному стандарту EN ISO 1938.

С помощью небольших наборов из 2-3х таких точных калибров с шагом диаметров 0,1 или 1,0 мкм можно не только сортировать детали на годные и брак, но и практически достаточно точно определить их диаметр, потому что можно подобрать калибр диаметром очень близким к предельному размеру контролируемой детали, например, с точностью 1-2 мкм. Также следует отметить, что точность измерения малых диаметров с помощью калибров выше, потому что в этом случае практически отсутствует температурная погрешность и мала погрешность от допуска на изготовления калибра (±0,4 мкм).

Калибры для контроля конусов

В инструментах и шпинделях станков широко применяют инструментальные метрические конусы (конусность 1:20) и конусы Морзе (конусность от 1:19,002 до 1:20,047) по ГОСТ 25557-82 и ГОСТ 9953-82.

Несмотря на наличие большого количества приборов и приспособлений для контроля конусов проверка конусности и припасовка конусов с помощью калибров и краски обеспечивает более высокую точность и надежность конусных соединений. Поэтому при изготовлении шпинделей и инструментов применяют калибры для контроля и припасовки конусов.

Для комплексной проверки конусов инструментов по конусности и базорасстоянию применяются калибры-пробки и калибра-втулки, основные размеры и допускаемые отклонения которых установлены ГОСТами и международными стандартами.

При проверке базорасстояния (т.е. расстояния от базы конуса до его основного расчетного сечения) эти калибры используются как предельные. Торец годного проверяемого конуса изделия должен находиться между рисками калибра-пробки или в пределах уступа калибра-втулки.

При проверке конусности калибры используют не кАк предельные, а как нормальные калибры. Проверку производят припасовкой по краске. Наилучшая припасовка получается при использовании типографской красной краски и синей берлинской лазури. Типографской краске следует отдавать предпочтение, так как она, в отличие от лазури, не содержит крупинок и лучше видна на контролируемой поверхности. Краску наносить на контролируемую поверхность рекомендуется следующим образом: краска или губка, пропитанная краской, кладется в тампон и обвернутый плотной, но не ворсистой тканью. На тампон капают несколько капель машинного масла и затем им несколько раз проводят по контролируемой поверхности. После этого краску дополнительно растирают по всей поверхности фланелью.

Предельные отклонения в стандарте даются на разность диаметров на 100 мм длины в мкм, cиметричные для пробок (±) и односторонние «в плюс» для втулок.

Полный комплект калибров состоит из пробки, втулки и, по требованию заказчика, контркалибра-пробки. Калибр-пробка и калибр-втулка выпускаются не припасованными, так как имеют различное расположение полей допусков.

Контркалибры-пробки применяют для припасовки к ним калибров-втулок. Торец новой втулки должен совпадать с передним краем передней риски контркалибра. Допускается не доход торца втулки не более 0,1 мм. Калибр-втулка, находящийся в эксплуатации, считается предельно изношенной, если торец втулки переходит за передний край передней риски более чем на 20% расстояния между рисками. Толщина слоя краски при контроле и припасовке не должна превышать 2—5 мкм в зависимости от размеров и степени точности втулки.

Калибры изготовляют из закаленной стали. Твердость измерительных поверхностей должна находиться в пределах HRC62-64. Шероховатость измерительных поверхностей у пробок должна быть не более Ra= 0,08 мкм, а у втулок не более Ra= 0,16 мкм по ГОСТ 2789-73.

Калибры-пробки, находящиеся в эксплуатации, подлежат обязательной поверке и калибровке. Конусность может быть проверена на на синусной линейке или КИМ по диаметру в двух сечениях, прямолинейности образующих может быть проверена по лекальной линейке по четырем образующим через 90°, а также на специальных приборах для измерения конусов.

Калибры-втулки проверяются припасовкой по контркалибрам.

Подробно таблицы размеров, допусков и технические требования конусных калибров приведены в ГОСТ 2849-94 «Калибры для конусов инструментов» и ГОСТ 20305-94 «Калибры для конусов 7:24».

Калибры для контроля резьбы

Для контроля внутренней резьбы применяют проходные резьбовые пробки (ПР), проверяющие приведенный средний диаметры гайки, и непроходные резьбовые пробки (НЕ), проверяющие верхний предел среднего диаметра гайки. Калибр-пробка резьбовой проходной ПР должен свободно ввинчиваться в контролируемую внутреннюю резьбу. Свинчиваемость калибра с резьбой означает, что приведенный средний диаметр резьбы не меньше установленного наименьшего предельного размера и имеющиеся погрешности шага и угла профиля внутренней резьбы компенсированы соответствующим увеличением среднего диаметра. Увеличение среднего диаметра компенсирует и погрешности винтовой линии резьбы и отклонения формы (круглости, цилиндричности).

Калибр-пробка резьбовой непроходной НЕ, как правило, не должен ввинчиваться в контролируемую резьбу. Допускается ввинчивание калибра до двух оборотов (для сквозной резьбы с каждой из сторон втулки). При контроле коротких резьб (до четырех витков) ввинчивание калибра-пробки допускается до двух оборотов с одной стороны или в сумме с двух сторон.

Проходной резьбовой калибр-пробка проверяет, не выходит ли средний диаметр резьбы за установленный наибольший предельный размер.

Для проверки внутреннего диаметра гайки применяются гладкие проходная и непроходная пробки.

Калибр-пробка гладкий проходной ПР должен свободно входить в контролируемую резьбу под действием собственного веса или при определенной нагрузке.

Калибр-пробка гладкий непроходной НЕ, как правило, не должен входить в контролируемую резьбу под действием собственного веса или под действием определенной нагрузки. Допускается вхождение калибра на один шаг внутренней резьбы.

Аналогично для контроля наружной резьбы применяют резьбовые проходные кольца (ПР), проверяющие приведенный средний диаметр резьбы, и непроходные резьбовые кольца (НЕ), проверяющие нижний предел среднего диаметра резьбы. Кроме того, наружный диаметр резьбы проверяется предельной гладкой скобой.

Калибр-кольцо ПР должен свободно навинчиваться на контролируемую резьбу. Свинчиваемость калибра с резьбой означает, что приведеный средний диаметр резьбы не выходит за установленный наибольший предельный размер и имеющиеся погрешности шага и угла профиля наружной резьбы компенсированы соответствующим уменьшением среднего диаметра. Уменьшение среднего диаметра резьбы компенсирует также погрешности винтовой линии резьбы и погрешности формы (круглость, цилиндричность).

Калибр-кольцо резьбовой непроходной НЕ, как правило, не должен навинчиваться на контролируемую наружную резьбу. Допускается навинчивание непроходного калибра-кольца до двух оборотов. При контроле коротких резьб (до трех витков) навинчивание калибра-кольца не допускается. Непроходной резьбовой калибр-кольцо НЕ проверяет, не выходит ли средний диаметр резьбы за установленный наименьший предельный размер.

Калибр-скоба резьбовой проходной ПР должен скользить по контролируемой резьбе под действием собственного веса или определенной силы не менее чем в трех положениях, расположенных на равном расстоянии по всей окружности резьбы. Этим калибром проверяют наибольший предельный размер среднего диаметра наружной резьбы.

Контроль резьбы калибрами-скобами рекомендуется сопровождать выборочным контролем с помощью проходного резьбового калибра-кольца, так как калибр-скоба не выявляет всех отклонений формы наружной резьбы. В спорных случаях решающим методом контроля является контроль проходным резьбовым калибром-кольцом ПР.

Калибр-скоба резьбовой непроходной НЕ, как правило, не должен проходить под действием собственного веса или определенной силы ни в одном из трех (не менее) положений, расположенных на равном расстоянии по всей окружности резьбы. Допускается прохождение калибра-скобы на первых двух витках наружной резьбы. Этим калибром проверяется наименьший предельный размер среднего диаметра наружной резьбы.

Для проверки наружного диаметра резьбы (болта) применяются гладкие проходная и непроходная пробки.

Калибр-кольцо гладкий проходной или калибр-скоба гладкий проходной ПР должен проходить по наружной резьбе под действием собственного веса или под действием определенной силы.

Калибр-скоба гладкий непроходной или кадибр-кольцо гладкий непроходной НЕ не должен проходить по наружной резьбе, в крайнем случае только закусывать.

Для проверки износа резьбовых калибров выпускают контрольные калибры.

При контроле калибрами резьба считается годной, если проходной калибр свинчивается с изделием по всей длине резьбы без усилия, а непроходной калибр свинчивается с изделием не более чем на 1—2 нитки.

Резьбовые пробки могут проверяться по всем элементам на универсальном микроскопе. Проверка резьбовых колец, особенно малых диаметров, универсальными средствами невозможна. Поэтому для их проверки служат контрольные калибры.

Схема расположения полей допусков рабочих, приемных и контрольных калибров подробно указана в справочнике. Там же указаны допуски на средний, наружный и внутренний диаметры, шаг и половину угла профиля калибров для метрических, дюймовых и трубных резьб.

Проходные калибры имеют полный профиль резьбы и длину резьбовой части, равную длине свинчивания согласно ГОСТ 1774-60 “Калибры резьбовые нерегулируемые”. Непроходные калибры и контркалибры имеют укороченный профиль резьбы. Длина резьбовой части непроходного калибра составляет всего 2—3,5 витка. Укороченный профиль резьбы уменьшает влияние погрешностей половины угла профиля резьбы на результаты контроля непроходным калибром. Другим отличительным признаком непроходных калибров является гладкая цилиндрическая направляющая.

У проходных и непроходных пробок при шаге резьбы 1 мм и более заходные нитки резьбы должны быть срезаны до полной ширины основания витка.

Проходные кольца имеют резьбу на всей ширине кольца. Наружная цилиндрическая поверхность накатывается. Резьба непроходных колец обычно имеет только 2—3,5 витка с укороченным профилем резьбы. При шаге резьбы меньше 1 мм непроходные кольца выполняются с полным профилем.

Допуски шага резьбы калибров и контркалибров выбираются по ГОСТ в зависимости от длины резьбы калибров, а половины угла профиля — в зависимости от шага резьбы.

Калибры изготовляют из стали X по ГОСТ 5950—73 или ШХ15 по ГОСТ 801—78. Твердость измерительных поверхностей должна находиться в пределах HRC58—64. Шероховатость измерительных поверхностей у пробок должна быть не более Ra= 0,08 мкм, а у втулок не более Ra= 0,16 мкм по ГОСТ 2789—73.

Следует отметить, что существует большое количество измерительных приборов для поэлементного контроля резьбы (шага, наружного и внутреннего диаметра, глубины впадины, угла профиля, конусности и др.). Однако, результаты измерения этими приборами не дают полного представления о резьбовом соединении (свинчиваемости). Они полезны для наладки резьбонарезных и резьбошлифовальных станков. Только резьбовые калибры дают полную уверенность в годности частей и в свинчиваемости резьбовых соединений и в их надежности.

Шаблоны

К калибрам относят также шаблоны для контроля линейных размеров и предназначенных для проверки длин, глубин и высот уступов, а также не точных деталей сложной формы, изготавливаемых по 11-17 квалитетам точности. Шаблоны были одними из первых калибров, применяемых в машиностроении. Они являются нормальными калибрами.

Шаблоны изготовляются из листового материала. Шаблоны применяют для контроля расстояний между параллельными поверхностями, для контроля глубин и высот уступов и других деталей сложной формы. Наибольшее распространение шаблоны получили при изготовлении и ремонте деталей железнодорожного транспорта (головки рельса, расстояние между рельсами и др.).

Также применяют шаблоны для проверки правильности заточки угла сверл и резцов

Другие примеры шаблонов показаны на рис. 2.2.6.

Годность изделия определяют по наличию зазора между соответствующими поверхностями шаблона и изделия. Вместо проходной и непроходной сторон у этих калибров различаютстороны, соответствующие наибольшему и наименьшему предельным размерам изделия.

Допуски предельных калибров (шаблонов) для глубин и высот уступов для 11-17 квалитетов точности установлены ГОСТ 2534-77 “Калибры предельные для глубин и высот”.

Расположение полей допусков калибров зависит от направления их износа. При изготовлении калибров для собственного производства допуск на изготовление разрешается увеличить до 50% за счет поля допуска на износ.

К калибрам для проверки линейных размеров можно отнести также щупы, которые представляют собой пластинки из пружинной стали с параллельными измерительными плоскостями.

Их применяют для проверки величины зазора между поверхностями. Щупы изготовляют с номинальными размерами от 0,02 до 1 мм, длиной 50, 100 или 200 мм.

В наборе щупы используют как отдельно, так и в различных сочетаниях для образования нужного размера.

Отклонения по толщине щупов допускаются только в плюс. Проверку щупов производят с помощью измерительной головки не менее, чем в 6 точках на каждой пластинке.

Калибры (шаблоны) профильные

Контуры изделий сложного профиля проверяются специальными профильными калибрами или шаблонами, измерительная кромка которых воспроизводит профиль изделия. По способу проверки изделий профильные калибры делятся на прикладные и накладные.

Прикладные калибры имеют профиль обратный по отношению к проверяемому профилю изделия. Проверку изделия производят на основании глазомерной оценки величины просвета при прикладывании шаблона к изделию.

В зависимости от формы и качества поверхности проверяемого изделия обеспечивается возможность выявления просвета (световой щели) в 0,003—0,005 мм.

Накладные калибры имеют контур аналогичный проверяемому изделию. Проверку производят путем наложения калибра на проверяемое изделие и визуальной оценки совпадения их контуров. Из-за сложности точного совмещения их контуров. Однако, наличие фасок на кромках и явления параллакса делает точность контроля накладными шаблонами значительно ниже, чем прикладными. Накладные шаблоны применяют только для контроля плоских изделий. Для контроля профиля тел вращения они непригодны.

По способу ограничения предельных контуров изделий профильные калибры делятся на нормальные и предельные. Преимущественным распространением пользуются нормальные калибры (калибры сравнения), воспроизводящие контур «наибольшего тела» изделия, считающийся номинальным профилем изделия, от которого производится отсчет отклонений калибра. Предельные калибры выполняются по предельным (наибольшим и наименьшим) контурам изделия.

Единой системы допусков на профильные калибры не существует.

Рекомендуется допуски профильных калибров назначать «в тело» калибра в пределах 10-20% допуска изделия. Допуски контркалибров располагают симметрично относительно номинального контура изделия и принимают равными (2,5-5)% допуска изделия. Материалом для изготовления профильных калибров служит листовая легированная сталь. Калибры закаливают до твердости HRC = 58-60.

Также иногда применяют радиусные шаблоны, представляющие собой стальные пластинки с профилем дуги окружности на конце и предназначенные для определения радиусов закруглений на различных изделиях. Радиусные шаблоны комплектуются в наборы. Проверка радиусов изделий производится на просвет при прикладывании соответствующего шаблона. Радиусные шаблоны могут быть использованы в качестве предельных калибров, если проверку производить с помощью двух шаблонов с разными радиусами и наблюдать характер просвета, образующийся при каждом шаблоне.

Следует отметить, что в настоящее время при наличии многочисленных точных измерительных приборов шаблоны применяются редко. Даже в железнодорожных депо, занимающихся эксплуатацией и ремонтом подвижного состава, отказываются от шаблонов и переходят на современные измерительные приборы.

Щупы

Щупы - одни из первых нормальных калибров, применяемых в машиностроении. Щупы представляют собой набор длинных полосок из закаленной стали определенной толщины. Набор щупов соединен с одной стороны. Выпускают наборы из нескольких щупов с шагом по толщине 0,05 мм.

Толщина щупов составляет от 0,03 до 1,0 мм. В наборе бывает от 10 до 17 щупов. Щупы не являются измерительным инструментом, но удобны при сборке и настройке машин.

Калибры - средства измерительного контроля, предназначенные для проверки соответствия действительных размеров, формы и расположения поверхностей деталей заданным требованиям.

Калибры применяют для контроля деталей в массовом и серийном производствах. Калибры бывают нормальные и предельные.

Нормальный калибр - однозначная мера, которая воспроизводит среднее значение (значение середины поля допуска) контролируемого размера. При использовании нормального калибра о годности детали судят, например, по зазорам между поверхностями детали и калибра, либо по «плотности» возникающего сопряжения между контролируемой деталью и нормальным калибром. Оценка зазора, следовательно, результаты контроля в значительной мере зависят от квалификации контролера и имеют субъективный характер.

Предельные калибры - мера или комплект мер обеспечивающие контроль геометрических параметров деталей по наибольшему и наименьшему предельным значениям. Изготавливают предельные калибры для проверки размеров гладких цилиндрических и конических поверхностей, глубины и высоты уступов, параметров резьбовых и шлицевых поверхностей деталей. Изготавливают также калибры для контроля расположения поверхностей деталей, нормированных позиционными допусками, допусками соосности и др.

При контроле предельными калибрами деталь считается годной, если проходной калибр под действием силы тяжести проходит, а непроходной калибр не проходит через контролируемый элемент детали. Результаты контроля практически не зависят от квалификации оператора.

По конструкции калибры делятся на пробки и скобы. Для контроля отверстий используют калибры-пробки, для контроля валов - калибры-скобы.

По назначению калибры делятся на рабочие и контрольные.

Рабочие калибры предназначены для контроля деталей в процессе их изготовления и приёмки. Такими калибрами на предприятиях пользуются рабочие и контролеры отделов технического контроля (ОТК). Контрольные калибры используют для контроля жестких рабочих предельных калибров-скоб или для настройки регулируемых рабочих калибров.

Комплект рабочих предельных калибров для контроля гладких цилиндрических поверхностей деталей включает:

Проходной калибр (ПР), номинальный размер которого равен наибольшему предельному размеру вала или наименьшему предельному размеру отверстия;

Непроходной калибр (НЕ), номинальный размер которого равен наименьшему предельному размеру вала или наибольшему предельному размеру отверстия.

В основу конструирования гладких калибров положен принцип Тейлора или принцип подобия, согласно которому проходные калибры должны являться прототипом сопрягаемой детали и контролировать в комплексе все виды погрешностей данной поверхности (проверка диаметра и погрешности формы, включая отклонения от прямолинейности оси отверстий). Это обеспечивает собираемость соединения. Непроходные калибры должны обеспечивать поэлементный контроль (контроль собственно размеров), следовательно, контакт между рабочими поверхностями калибров и контролируемой поверхностью должен быть точечным.


Полностью отвечающий принципу Тейлора рабочий калибр для контроля отверстия должен иметь проходную сторону в виде цилиндра с длиной, равной длине сопряжения или контролируемой поверхности (полная пробка), и непроходную сторону в виде неполной пробки в виде стержня со сферическими наконечниками. Рабочий калибр для контроля вала должен иметь проходную сторону в виде кольца с длиной, равной длине сопряжения или контролируемой поверхности, и непроходную сторону в виде скобы с ножевыми поверхностями. На практике из-за особенностей технологии изготовления и контроля часто наблюдается нарушение принципа Тейлора, например, калибры для контроля отверстий небольших диаметров изготавливают в виде полных пробок, а для контроля валов - в виде скоб.

Контроль размеров отверстий обычно производится проходными и непроходными калибрами-пробками, вставленными в общую рукоятку (рис. 3.77 а ).

Калибры для валов обычно де лают в виде скоб с плоскопараллельными рабочими поверхностями (рис. 3.77 б ).

б в

Рис. 3.77. Эскизы калибров

Если проходной и непроходной калибры для контроля отверстий изготавливают в виде полных пробок, то непроходная пробка имеет меньшую длину, чем проходная. Для отверстий больших диаметров чаще используют калибры с рабочими поверхностями в виде неполной пробки, например листовая пробка с цилиндрическими рабочими поверхностями, причем длина рабочих поверхностей непроходной пробки существенно меньше, чем у проходной. Контроль каждой пробкой осуществляется в нескольких поперечных сечениях отверстия (контролируется как минимум два взаимно перпендикулярных сечения).

При контроле валов калибром-скобой и поверхность проверяют в нескольких сечениях по длине и не менее чем в двух взаимоперпендикулярных направлениях каждого сечения.

Если детали годные, то в соответствии с названием проходные калибры (ПР) должны проходить через контролируемые поверхности под действием собственного веса, а непроходные (НЕ) проходить не должны.

При контроле гладкими калибрами следует соблюдать ряд правил, в частности пользоваться только калибрами, предназначенными для данного случая (рабочие, как правило, используют новые проходные калибры, работники ОТК могут использовать частично изношенные калибры). Необходимо следить за чистотой измерительных поверхностей, не пытаться силой проталкивать проходные и непроходные калибры, во избежание нагрева не следует держать калибры в руках дольше, чем это необходимо.

Виды гладких нерегулируемых калибров для контроля цилиндрических отверстий и валов устанавливает ГОСТ 24851-81, в котором их различным конструктивным видам присвоены номера (1...12) и соответствующие наименования.

Существуют три варианта исполнения гладких калибров:

1. Однопредельные пробки или скобы (проходные, маркируемые ПР, и непроходные - НЕ), применяемые преимущественно при контроле относительно больших размеров.

2. Двухпредельные двусторонние калибры, которые несколько ускоряют контроль. Они предусмотрены для сравнительно небольших размеров: калибры-скобы до 10 мм и калибры пробки до 50 мм.

3. Односторонние двухпредельные калибры, которые компактнее и практически вдвое ускоряют контроль. Такие калибры предусмотрены для широкого диапазона размеров.

Односторонние скобы , начиная с размеров свыше 200 мм для контроля валов до 8-го квалитета включительно, обязательно должны снабжаться теплоизоляционными ручками-накладками.

Конструктивно гладкие калибры могут выполняться регулируемыми и нерегулируемыми .

Калибры для размеров свыше 500 мм, согласно ГОСТ 24852-81 применяют только для контроля деталей 9...17-го квалитетов. Эти калибры имеют единую схему расположения полей допусков.

Расчет калибров сводится к определению исполнительных размеров измерительных поверхностей, ограничению отклонений их формы и назначению оптимальной шероховатости. Началом отсчета отклонений для проходных гладких калибров является проходной предел вала или отверстия, для непроходных - их непроходной предел. На проходные калибры кроме допуска на изготовление отдельно предусматривают еще допустимую границу износа.

Для производительного и точного контроля внутренних размеров контроля калибров-скоб в процессе их доводки при изготовлении и для быстрого определения момента полного изнашивания используют гладкие контрольные калибры (рис. 3.77 в ).

В комплект контрольных калибров входят три калибра, выполненные в виде шайб:

Контрольный проходной калибр (К-ПР);

Контрольный непроходной калибр (К-НЕ);

Калибр для контроля износа проходного калибра (КИ).

Контрольные калибры К-ПР и К-НЕ из-за малости допусков рабочих калибров, для контроля которых они предназначены, выполнены как нормальные, а не предельные калибры, и годность рабочих калибров определяется с применением субъективной оценки соответствия проверяемых размеров контрольным калибрам.

Калибр КИ предназначен для контроля допустимого износа проходной стороны и может рассматриваться как предельный калибр, контролирующий границу допустимого износа.

Контрольные калибры (при размерах до 180 мм можно использовать также блоки концевых мер) предназначены для ускорения проверки окончательных размеров проходной и непроходной сторон при изготовлении нерегулируемых или установке регулируемых скоб (К-ПР и К-НЕ), а также для контроля момента полного износа проходных калибров-скоб в процессе их эксплуатации (КИ).

Калибры для контроля калибров-пробок не изготавливают. Размеры калибров-пробок проверяют универсальными измерительными средствами, что для наружных поверхностей не представляет сложности.

Для всех калибров устанавливают допуски на изготовление, а для проходного калибра, который при контроле детали изнашивается более интенсивно, дополнительно устанавливают границу износа.

Допуски на измерительные поверхности гладких калибров установлены стандартами ГОСТ 24853-81 (для размеров до 500 мм) и ГОСТ 24852-81 (для размеров от 500 мм до 3150 мм). Допуски рабочих поверхностей калибров значительно меньше допусков тех деталей, для контроля которых они предназначены, и апробированы многолетней практикой.

Для построения схем расположения полей допусков необходимо определять номинальные размеры калибров, которые соответствуют предельным размерам контролируемой калибром поверхности отверстия или вала (рис. 3.78).

Расположение полей допусков калибров по ГОСТ 24853-81 зависит от номинального размера детали (различаются схемы для размеров до 180 мм и свыше 180 мм и для квалитетов 6, 7, 8 и от 9 до 17).

Рис. 3.78. К определению номинальных размеров калибров

Стандартом установлены следующие нормы для калибров :

- Н - допуск на изготовление калибров для отверстия;

- Н s - допуск на изготовление калибров со сферическими измерительными поверхностями (для отверстия);

- Н 1 - допуск на изготовление калибров для вала;

- Н р - допуск на изготовление контрольного калибра для скобы.

Износ проходных калибров ограничивают значениями:

- Y - допустимый выход размера изношенного проходного калибра для отверстия за границу поля допуска изделия;

- Y 1 - допустимый выход размера изношенного проходного калибра для вала за границу поля допуска изделия.

Для всех проходных калибров поля допусков смещены внутрь поля допуска детали на величину Z для калибров-пробок и величину Z 1 для калибров-скоб. Такое расположение поля допуска проходного калибра, подверженного износу, позволяет повысить его долговечность, хотя увеличивает риск забракования годных деталей новым калибром.

Исполнительным называется размер калибра, по которому изготавливается калибр. При определении исполнительного размера калибра осуществляют замену номинального размера: за «новый» номинальный размер принимают предел максимума материала калибра с расположением поля допуска «в тело» детали. На чертежах рабочих калибров-пробок и контрольных калибров обозначают наибольший размер с отрицательным отклонением, равным ширине поля допуска, для калибров-скоб - наименьший размер с положительным отклонением.

Калибры широко применяют для контроля сложных поверхностей деталей, включая шлицевые и резьбовые. При этом для конструирования рабочих поверхностей калибров обязательно используют принцип Тейлора.

Например , для контроля шлицевых втулок рабочий проходной калибр изготавливают в виде шлицевого вала, что позволяет одновременно контролировать размеры по наружному и внутреннему диаметрам шлицевой втулки, а также взаимное расположение наружной и внутренней цилиндрических поверхностей втулки, шаг и направление шлиц, ширину впадин. Для контроля непроходных пределов (пределов минимума материала детали) используют комплект непроходных калибров, обеспечивающих проверку собственно размеров элементов шлицевой втулки. Диаметры контролируют пробками, причем для внутреннего диаметра применяют неполную или полную пробку, а для наружного диаметра шлицевой втулки используют неполную пробку. В комплект входит и рабочий калибр для контроля ширины шлиц.

Для контроля резьбы применяют рабочую проходную резьбовую пробку с резьбой полного профиля и длиной, равной длине резьбового сопряжения. В комплект непроходных калибров входят рабочий непроходной резьбовой калибр с укороченным профилем резьбы и уменьшенной длиной резьбовой части, а также гладкие калибры для контроля диаметра выступов. Непроходной резьбовой калибр должен свинчиваться с ответной деталью не более чем на полтора витка.

Калибром называют бесшкальный измерительный инструмент, предназначенный для контроля (проверки) размеров или формы и взаимного расположения поверхностей детали. Поскольку размер детали ограничен двумя предельными размерами, для их контроля необходимо иметь два калибра, один из которых контролирует деталь по ее наибольшему, а другой по наименьшему предельным размерам. Такие калибры называются предельными. В отличии от приборов и универсальных измерительных инструментов, снабженных отсчетными устройствами (шкалой), калибры не определяют действительного значения контролируемого размера, а лишь устанавливают, находится ли контролируемый размер в пределах допуска. При контроле предельными калибрами детали сортируют на три группы: годные - с размерами, лежащими в поле допуска на изготовление, брак окончательный и брак исправимый. В зависимости от формы контролируемых деталей калибры подразделяются на гладкие, резьбовые, шлицевые и т. п. Наиболее многочисленные гладкие калибры. Их подразделяют на калибры для контроля валов (скобы и кольца) и калибры для контроля отверстий (пробки).

Скобы - калибры для контроля валов. Кольца применяют редко, так как они менее универсальны и не позволяют контролировать детали на станке, например размеры шеек коленчатого вала. Скобы имеют две стороны: проходную и непроходную. Они отличаются не только номинальными размерами, но и внешним видом (непроходная сторона скобы имеет фаски на измерительных губках).

Конструкции скоб многочисленны и разнообразны. Наиболее распространены скобы односторонние, двусторонние листовые, штампованные и литые, а также регулируемые. Регулируемые скобы можно переналадить на другой размер детали или восстановить размер по мере износа калибра. Это повышает срок службы скоб и снижает расходы на приобретение калибров. Регулировка размеров скобы достигается перемещением одной из вставок калибра. Пробками называют калибры для контроля отверстий.

Конструкции пробок достаточно многообразны. Они бывают полного и профилей, двусторонними и односторонними, со вставками.

На калибры наносят маркировку: номинальный размер детали, условное буквенное обозначение поля допуска детали (основного отклонения с номером квалитета), знаки и цифровые значения предельных отклонений детали (мм), обозначение стороны калибра - ПР (проходная) и НЕ (непроходная) и товарный знак завода - изготовителя.

Для контроля износа скоб (колец) и их размеров в процессе изготовления в квалитетах от 1Т6 до П77 размером до 500 мм предусмотрены контрольные калибры трех видов:

К-ПР - контркалибр-пробка для контроля размера проходной ПР новой рабочей скобы; К-НЕ - контркалибр пробка для контроля размера непроходимой НЕ новой рабочей скобы; К-И - контркалибр пробка для контроля износа проходной ПР скобы по наибольшему предельному износу. Если калибр К-И проходит через контролируемую скобу, то она изношена свыше установленного допуска и подлежит изъятию.

Допуски калибров (ГОСТ 24853 - 81). На изготовление всех видов калибров установлены допуски, обозначаемые латинскими буквами: Н - для пробок (Нs - для калибров со сферическими измерительными поверхностями); Н1 для скоб и Н р - для контркалибров.

В квалитетах от 1Т6 до 1Т10 включительно допуски для скоб примерно на 50% больше допусков для пробок, что объясняется большей сложностью изготовления скоб. В квалитетах 1Т11 и грубее допуски для скоб равны допускам для пробок.

Проходные калибры ПР в процессе эксплуатации изнашиваются. Величина износов калибров ПР ограничивается полем допуска детали, а для деталей с допусками до 8-го квалитета разрешается выход размера калибра - пробки (скобы) за этот предел на величину V (VI). При номинальных размерах свыше 180 мм поле допуска калибра НЕ и граница износа проходного калибра ПР сдвигается внутрь поля допуска детали на дополнительную величину б или б1 - так называемую "зону безопасности". Сдвиг полей допусков калибров и границ износа их проходных сторон внутрь поля допуска детали на величину z или z1 устраняет возможность искажения характера посадок и гарантирует получение размеров годных деталей в пределах установленных полей допуска.

4. ГЛАДКИЕ ПРЕДЕЛЬНЫЕ КАЛИБРЫ

Калибрами называют бесшкальные контрольные инструменты. Они служат для контроля деталей в процессе производства, т.е. для проверки того, находится ли выполняемый размер детали в пределах заданных отклонений. С помощью калибров нельзя определить числовые значения проверяемой величины, можно установить лишь годность детали, т.е. соответствие действительных значений заданным.

Рабочие калибры предназначены для контроля деталей в процессе их изготовления. Ими пользуются операторы и наладчики оборудования, а также контролеры ОТК предприятия-изготовителя.

Приемные калибры применяют представители заказчика для приемки деталей.

Контрольные калибры применяют для проверки размеров рабочих и приемных калибров-скоб и установки на размер регулируемых калибров.

Комплект предельных калибров для контроля размеров гладких цилиндрических деталей состоит из проходного калибра (ПР) и непроходного (НЕ). Деталь считается годной, если ПР под действием собственного веса или усилия, примерно равного ему, проходит по контролируемой поверхности детали, а НЕ не проходит.

4.1. Материалы для калибров

Вставки и насадки калибр-пробок изготавливают из сталей Х или ШХ-15. Допускается изготовление вставок и насадок из сталей У10А или У12А для калибров всех видов, кроме неполных калибр-пробок, получаемых штамповкой, а также из стали 15 или 20 для калибров диаметром более 10 мм.

Параметры шероховатости рабочих поверхностей должны находиться в пределах Ra 0,04…0,32 мкм в зависимости от вида калибра, точности контролируемого параметра изделия и его размера.

Для повышения износостойкости и снижения затрат в условиях производства часто применяют калибры со вставками и насадками из твердосплавных материалов. Износостойкость таких калибров в 50 – 150 раз выше по сравнению с износостойкостью хромированных калибров при повышении стоимости калибров в 3 – 5 раз.

4.2. Калибр-пробки

Гладкие калибры для контроля отверстий выполняются в форме цилиндров, т.е. являются прототипами проверяемых отверстий, и поэтому называются пробками. Обе пробки – проходная и непроходная – могут быть выполнены как одно целое, если диаметр отверстия меньше 50 мм, и отдельно, если он больше (рисунок 4.1).

Рисунок 4.1

Если калибр ПР не входит в отверстие, то деталь считается негодной, но брак исправимый, т.е. требуется дополнительная обработка отверстия. Если пробка НЕ вошла в отверстие, то это означает, что деталь бракованная и исправлению не подлежит.

4.3. Калибр-скобы

Гладкие калибры для контроля валов выполняются в виде скоб, причем скобы могут быть нерегулируемыми (рисунок 4.2, а, б) и регулируемыми (рисунок 4.2, в). Если калибр-скоба ПР не проходит по валу, то брак исправимый, а если калибр-скоба НЕ проходит по валу, то он считается окончательно бракованным.

Калибр-скобы бывают односторонними (рисунок 4.2, а,в) и двухсторонними (рисунок 4.2, б). Регулируемые скобы со вставками или передвижными губками (рисунок 4.2, в) позволяют компенсировать износ и могут настраиваться на разные размеры, однако они имеют меньшие по сравнению с нерегулируемыми скобами точность и надежность и, как правило, применяются для контроля размеров с допусками не точнее 8-го квалитета точности.

Рисунок 4.2

4.4. Контрольные калибры

Для контроля нерегулируемых калибр-скоб и для установки регулируемых калибров применяются контрольные калибры: для проходной стороны (К-ПР), непроходной (К-НЕ) и для контроля износа (К-И). Они обычно выполняются в виде шайб (рисунок 4.3). Однако, несмотря на малый допуск контрольных калибров, они искажают установленные поля допусков на изготовление и износ рабочих калибров, поэтому контрольные калибры имеют ограниченное применение. В мелкосерийном и единичном производстве целесообразно вместо контрольных калибров применять концевые меры длины или универсальные измерительные приборы.

Рисунок 4.3

4.5. Расположение полей допусков калибров

На гладкие калибры ГОСТ 24853-81 устанавливает допуски на изготовление: Н – рабочих калибр-пробок для отверстий; Н 1 – калибр-скоб для валов; Н р – контрольных калибров для скоб. Схема полей допусков пробок представлена на рисунке 4.4, а схема полей допусков скоб и контрольных калибров на рисунке 4.5.

В квалитетах 6, 8, 9, 10 допуски Н 1 для скоб примерно на 50% больше допусков Н для пробок соответствующих квалитетов, что объясняется сложностью изготовления скоб. В квалитетах 7, 11 и грубее допуски Н и Н 1 равны. Допуски Н р для всех типов контрольных калибров одинаковы.

Рисунок 4.4

Рисунок 4.5

Для проходных калибров, которые в процессе контроля в сравнении с непроходными изнашиваются более интенсивно, кроме допуска на изготовление предусматривается допуск на износ. Для всех проходных калибров поля допусков Н и Н 1 сдвинуты внутрь поля допуска изделия на z и z 1 (для пробок и скоб соответственно). Сдвиг полей допусков и границ износа позволяет устранить возможность искажения характера посадок и гарантировать получение размеров годных деталей в пределах установленных полей допусков.

На чертежах калибров и в документации указывается исполнительный размер. Это наибольший или наименьший размер калибра с одним отклонением, равным допуску, направленный в «тело» калибра. На чертеже скобы проставляется наименьший предельный размер с положительным отклонением, для пробки и контрольного калибра – их наибольший предельный размер с отрицательным отклонением.

Предельные размеры калибров подсчитываются по следующим формулам:

для пробки –

для скобы –

для контрольных –

5. РАЗМЕРНЫЕ ЦЕПИ

Размерной цепью называется совокупность размеров, образующих замкнутый контур и непосредственно участвующих в решении поставленной задачи. Для обозначения решений задач по обеспечению точности размерных цепей их удобнее всего представлять графически в виде замкнутого контура. Например, на рисунках 5.1, а и 5.2, а показаны эскизы простейшей детали и сборочной единицы, а на рисунках 5.1, б и 5.2, б – изображение размерных цепей, состоящих из длин её элементов.

Рисунок 5.1.

Размеры, входящие в цепь, называются составляющими звеньями или просто звеньями, и обозначаются чаще всего прописными буквами русского алфавита с индексами. Иногда используются строчные буквы греческого алфавита, кроме букв α, β, ε, λ, ω, ξ.

Рисунок 5.2.

В размерной цепи всегда выделяется одно звено, которое называется замыкающим, а при решении некоторых задач и исходным. Замыкающим звеном называется размер (звено) получаемый последним в процессе обработки детали или сборки узла. На рисунке 5.2, где показано соединение с зазором, сам зазор S будет являться замыкающим. Замыкающее звено принято обозначать буквой с индексом Δ, т.е. на рисунке 5.2, б вместо обозначения В 3 следует проставить В Δ . По детали, изображенной на рисунке 5.1, а вопрос может быть решен двояко. Если последовательно обработать размеры А 2 и А 1 , то звено А 3 будет замыкающим, а если сначала получить длину А 3 , а затем обработать А 2 , то замыкающим звеном будет уже А 1 . Составляющие звенья размерной цепи и замыкающее звено связаны между собой важной закономерностью, которая позволяет разделить составляющие звенья на увеличивающие и уменьшающие.

Увеличивающим звеном размерной цепи называется такое, с увеличением которого увеличивается размер замыкающего звена. Уменьшающим звеном будет то, с увеличением которого замыкающее звено уменьшается. Так на рисунке 5.3. звено А1 – увеличивающее, а звенья А2, А3, А4 будут уменьшающими.

Рисунок 5.3.

Соответственно этому над обозначениями размеров проставляются стрелки: для увеличивающего (А 1) она направлена вправо, а для уменьшающих (А 2 – А 4) – влево (рисунок 5.3, б).

5.1. Классификация размерных цепей

В зависимости от квалификационных признаков размерные цепи делятся на несколько видов.

По месту в изделии они могут быть подетальными и сборочными. Если в замкнутый контур входят размеры только одной детали, то такая цепь называется подетальной (рисунок 5.1), если входят размеры нескольких деталей, то сборочной (рисунки 5.2 и 5.3).

По области применения цепи подразделяются на конструкторские, технологические и измерительные. Конструкторские размерные цепи решают задачу по обеспечению точности при конструировании, и они устанавливают связь размеров деталей в изделии. На рисунке 5.2, а приведена элементарная сборочная размерная цепь, решающая задачу обеспечения точности сопряжения двух деталей, а на рисунке 5.3, а – четырех деталей.

Технологические размерные цепи решают задачу по обеспечению точности при изготовлении деталей на разных этапах технологического процесса.

Измерительные размерные цепи решают задачу обеспечения точности при измерении. Они устанавливают взаимосвязь между звеньями, которые влияют на точность измерения. При измерениях средство измерения вместе со вспомогательными элементами образуют измерительную размерную цепь, где замыкающим звеном является размер измеряемого элемента детали.

В зависимости от расположения звеньев размерные цепи делятся на линейные, угловые, плоские и пространственные. Размеры цепи, звеньями которых являются линейные размеры, называются линейными. В таких цепях звенья расположены на параллельных прямых. В угловых размерных цепях звенья представляют собой угловые размеры, отклонения которых могут быть заданы в линейных величинах, отнесенных к условной длине, или в градусах (радианах). В плоской размерной цепи звенья расположены произвольно в одной или нескольких параллельных плоскостях. В пространственной цепи звенья расположены произвольно, т.е. не параллельны одни другим и расположены в непараллельных плоскостях.

5.2. Основные соотношения размерных цепей

Размерная цепь всегда замкнута. На основании этого свойства установлена зависимость, которая связывает номинальные размеры звеньев. Для плоских размерных цепей по номинальным значениям эта зависимость выражается формулой:

, (5.1)

где m и n – число увеличивающих и уменьшающих звеньев соответственно.

Для определения зависимости, которая связывает допуски звеньев в размерной цепи, первоначально нужно определиться с предельными значениями исходного звена. Очевидно, что они будут:

, (5.2)

, (5.3)

Если вычесть значения А Δmax и А Δmin , т.е. по формулам 5.2 и 5.3 и учитывая то, что разница предельных значений не что иное как допуск, то получится выражение:

.

Окончательно можно получить:

. (5.4)

Из этой формулы видно, что величина допуска замыкающего звена равна сумме допусков составляющих звеньев. Поэтому, чтобы обеспечить наибольшую точность замыкающего звена, размерная цепь должна состоять из возможно меньшего числа звеньев, т.е. должен соблюдаться принцип наикратчайшей размерной цепи.

Если последовательно вычесть из выражений по формулам 5.2 и 5.3 выражение по формуле 5.1, то получатся зависимости, по которым определяются верхнее и нижнее предельные отклонения исходного звена.

, (5.5)

, (5.6)

где E s и E i – верхнее и нижнее предельные отклонения соответствующих звеньев.

Координата середины поля допуска замыкающего звена рассчитывается следующим образом:

. (5.7)

Величина допуска в соответствии с ГОСТ 25346-89 для большинства квалитетов определяется по формуле:

где T – обозначение допуска без соотнесения к конкретной системе допусков и виду размера;

а – число единиц допуска, определенное для данного квалитета;

i – единица допуска, зависящая от размера.

Применительно к расчетам размерной цепи эту формулу лучше записать в следующем виде:

Таблица 5.1

Значения а

Таблица 5.2

Значения i

5.3. Способы расчета размерных цепей

5.3.1. Способ равных допусков

При расчете цепи по способу равных допусков считается, что все звенья выполнены с одинаковыми допусками, т.е.

ТА 1 = ТА 2 = ТА 3 = … = ТА n .

Формулу (5.4) в этом случае можно представить в следующем виде:

ТА Δ = ТА 1 +ТА 2 +ТА 3 +… +ТА n .

Если допуски одинаковые, то формула ТА Δ записывается в следующем виде:

. (5.10)

Предельные отклонения назначаются с учетом вида размера: для охватывающих отклонения даются как для основных отверстий, для охватываемых – как для основных валов, для прочих – симметрично.

Однако способ равных допусков применяется сравнительно редко, т.е. в тех случаях, когда все номинальные размеры входят в один интервал размеров.

5.3.2. Способ равноточных допусков

Этот способ предполагает выполнение всех звеньев цепи с одинаковой точностью, т.е. по одному квалитету. Это означает, что величины а для всех звеньев будут одинаковы, т.е.

Тогда формула допуска (5.4) может быть записана следующим образом:

Из этой зависимости можно получить формулу для определения а ср:

. (5.11)

Если в размерной цепи присутствуют звенья с заранее установленным расчетом или стандартными допусками (например, подшипники качения), то эти допуски и значения i учитываются при определении а ср:

, (5.12)

где ТА ст – допуск, установленный ранее;

k – количество звеньев с заранее установленными допусками.

По найденному а ср из табл. 5.2 выбирается квалитет, а из таблицы допусков по номинальным размерам и определенному квалитету находятся допуски для всех звеньев. Предельные отклонения назначаются также, как для способа равных допусков.

При расчете цепи вероятностным методом а ср определяется по формуле:

, (5.13)

где t – коэффициент риска, определяемый в зависимости от принятого или установленного процента брака p (табл. 5.3);

λ i 2 – коэффициент, зависящий от закона распределения погрешностей. Чаще всего распределение погрешностей учитывается законом Гаусса, в этом случае λ i 2 = 1/9. Но могут использоваться и другие законы распределения. Если рассеяние размеров близко к закону Симпсона, то λ i 2 = 1/6, а если неизвестен характер рассеяния размеров, то рекомендуется принимать закон равной вероятности с λ i 2 = 1/3.

Таблица 5.3

Значения коэффициента риска

5.4. Задачи и методы расчета размерных цепей

В зависимости от исходных данных и точности звеньев размерной цепи, а так же цепи, ради которой определяются размеры цепи, решаются две задачи: прямая и обратная.

Прямая задача решается для определения допусков и предельных отклонений составляющих звеньев по заданным номинальным значениям всех размеров цепи и предельным отклонениям исходного (замыкающего) звена.

При решении обратной задачи определяются номинальный размер, допуск и предельные отклонения исходного звена (замыкающего) звена по заданным номинальным значениям, допускам и предельным отклонениям составляющих звеньев.

Существуют несколько методов решения прямой и обратной задачи в условиях полной и неполной взаимозаменяемости. Наиболее распространенными являются следующие методы:

    максимума – минимума;

    вероятностный;

    групповой взаимозаменяемости;

    регулирования;

    пригонки и совместной обработки.

Причем полную взаимозаменяемость обеспечивает только один метод: максимума – минимума, поэтому он имеет и другое название – метод полной взаимозаменяемости.

5.4.1. Метод максимума – минимума (полной взаимозаменяемости)

Метод максимума-минимума обеспечивает точность замыкающего звена при любом сочетании размеров составляющих звеньев. При этом предполагается, что даже при самых неблагоприятных сочетаниях размеров звеньев (все увеличивающие звенья имеют наибольшие значения, а все уменьшающие – наименьшие, или наоборот) будет обеспечена полная взаимозаменяемость. Поэтому этот метод иногда так и называется – метод полной взаимозаменяемости.

В зависимости от поставленной цели могут решаться как прямая, так и обратная задачи и применяться способ равных или равноточных допусков.

5.4.2. Вероятностный метод

При расчете размерных цепей вероятностным методом, допуски размеров составляющих звеньев могут быть значительно расширены. Это объясняется тем, что в большинстве случаев размеры замыкающего звена подчинены закону нормального распределения погрешностей, при котором риск получения брака при сборке узла (0,27%) приводит к значительному расширению допусков составляющих звеньев.

Расчет размерных цепей вероятностным методом значительно снижает стоимость изготовления деталей, поэтому его целесообразно применять в условиях крупносерийного и массового производства.

5.4.3. Метод групповой взаимозаменяемости (селективная сборка)

Этот метод применяется, в основном, для получения посадок с малыми допусками из числа деталей, сопрягаемые элементы которых выполнены по относительно большим допускам. Для реализации метода назначаются увеличенные допуски на размеры, образующих размерную цепь. Затем по этим допускам изготавливаются детали, которые обязательно измеряются и распределяются на отдельные группы по действительным размерам. Таких групп может быть несколько единиц, и несколько десятков, например, в подшипниковой промышленности их количество достигает 50. Сборка узлов осуществляется деталями с размерами какой-то одной определенной группы.

Основное достоинство метода заключается в получении высокой точности соединений применением расширенных допусков, т.е. изготовлением деталей более низкой точности. Это обеспечивает более экономичное производство по сравнению с тем, если бы производилась обработка по более узким допускам.

К недостаткам групповой взаимозаменяемости следует отнести: введение 100 %-го измерения деталей; необходимость в дополнительных производственных площадях и таре для размещения групп деталей; ужесточение требований к точности формы деталей в пределах одной размерной группы.

5.4.4. Метод регулирования

Этот метод используется на этапе конструирования изменением (регулировкой) одного из звеньев, которое называется компенсационным. В роли компенсаторов обычно выступают звенья, конструктивно выполненные в виде прокладок, упоров, клиньев, резьбовых пар и т.п. При этом остальные звенья в цепи обрабатываются по сравнительно большим допускам.

Достоинством метода является возможность относительно просто обеспечить точность замыкающего звена. Компенсационные звенья (чаще всего, прокладки) заранее изготавливаются разных размеров, и они затем легко подбираются в процессе сборки.

Недостаток метода заключается в необходимости дополнительных работ по установке, подбору или регулировке компенсаторов. Кроме того, если компенсаторы выполнены в виде клиньев или регулировочных винтов, то они сами требуют дополнительных креплений, поскольку в процессе эксплуатации возможно ослабление и смещение компенсаторов.

5.4.5. Метод пригонки и совместной обработки

Метод пригонки применятся в основном при единичном и мелкосерийном производствах. Так, например, станины металлорежущих станков в направляющих перед установкой на них перемещающихся частей, дополнительно обрабатываются (чаще всего шабрением), а затем проверяется степень прилегания сопрягаемых поверхностей «по краске».

Плунжерные пары для топливных насосов дизелей должны иметь в соединении зазор в пределах 0,4 - 2 мкм. Обеспечить такую малую величину зазора простым подбором деталей практически невозможно. Поэтому детали плунжерных пар предварительно подбирают так, чтобы они частично соединялись, даже не на полную длину. После этого на специальных станках их притирают друг к другу с помощью притирочных паст до тех пор, пока сопряжение не осуществится на всей длине.

Библиографический указатель

... , "водой" и т.п. не субстанциально, как "первоэлементы" древнегреческой философии (см. Элементы), а функционально. В генетическом... в заглавие «Трактата...». Однако дословный перевод «верующее сознание» внес бы в перевод чуждые тексту христианские...

  • Перевод с английского Оформление © Оформление ООО " Издательство ACT" 2004

    Документ

    Но сущий. Слово ουδέν, или ούδ-είς, дословно "ничто", означает, что то, ... изучающих психологию. Ниже приводится дословный перевод из русскоязычной работы В. Потто... Климент Александрийский, Синезий и Ориген, древнегреческие поэты так же, как и гностики...

  • Древнегреческая мифология особенности мифологического мышления о c новные циклы мифов

    Документ

    По времени известными нам произв. древнегреческой литературы. Содержа в себе огромное количество... . Цитата из Б. по поводу правды (дословный перевод ): «Разум человека не будет взволнован...

  • Основание нашей веры

    Документ

    Звучит так: «И Слово стало плотию». В дословном переводе с древнегреческого это звучит так: «Kai o logov ... или «обоими» – прим.перев. 65 Дословный перевод с древнегреческого звучит так: «Этого, определенного советом...

  • Для выполнения операций технического контроля в условиях массового и крупносерийного производства широко используют контрольные инструменты в виде калибров.


    Калибры - это тела или устройства, предназначенные для проверки соответствия размеров изделий или их конфигурации установленным допускам. Они применяются чаще всего для определения годности деталей с точностью 6... 18 квалитетов, а также в устройствах активного контроля, работающих по принципу «западающего калибра».


    С помощью предельных калибров определяют не численное значение контролируемого параметра, а выясняют, выходит ли этот параметр за предельные значения или находится между двумя допустимыми.


    При контроле деталь считается годной, если проходная сторона калибра (ПР) под действием усилия, примерно равного массе калибра, проходит, а непроходная сторона калибра (НЕ) не проходит по контролируемой поверхности детали. Если ПР не проходит, деталь относят к бракованным с исправимым браком. Если НЕ проходит, деталь относят к бракованным с неисправимым браком.


    Виды гладких калибров для цилиндрических отверстий и валов устанавливает ГОСТ 24851-81. В системе ИСО гладкие калибры стандартизованы ИСО-Р1938-1971.


    Стандарт предусматривает следующие гладкие калибры для валов и относящиеся к ним контрольные калибры:


    ПР - проходной калибр-скоба;


    НЕ - непроходной калибр-скоба;


    К-ПР - контрольный проходной калибр для нового гладкого калибр-скобы;


    К-НЕ - контрольный непроходной калибр для нового гладкого калибр-скобы;


    К-И - контрольный калибр для контроля износа гладкого проходного калибр-скобы.


    Для контроля отверстий предусмотрены:


    ПР - проходной калибр-пробка;


    НЕ - непроходной калибр-пробка.



    Рис. 2.43.

    Калибр-пробки для контроля отверстий.


    Применяют предельные калибр-пробки различных конструкций (ГОСТ 14807 - 69 ... ГОСТ 14827 - 69). К ним относятся: пробки двусторонние с цилиндрическими вставками (рис. 2.43, а) и со вставками с коническим хвостовиком (рис. 2.43, б, в), пробки с цилиндрическими насадками (рис. 2.43, г), пробки полные (рис. 2.43, д, е), пробки неполные (см. рис. 2.43, г), пробки односторонние листовые (рис. 2.43, ж), шайбы неполные и шайбы полные (рис. 2.43, з).





    Рис. 2.44.



    Предпочтение отдают односторонним предельным калибрам. Они сокращают время контроля изделий и расход материала.


    Калибр-скобы для контроля валов .


    Применяют предельные и регулируемые калибр-скобы (ГОСТ 18358-93 - ГОСТ 18369-93). К предельным калибр-скобам относятся: скобы листовые односторонние (рис. 2.44, а) и двусторонние; скобы штампованные односторонние (рис. 2.44, б), двусторонние (рис. 2.44, в) и односторонние с ручкой (рис. 2.44, г).


    Регулируемые калибр-скобы (рис. 2.45) позволяют компенсировать износ и могут настраиваться на разные размеры, относящиеся к определенным интервалам. Однако по сравнению с нерегулируемыми скобами они имеют меньшую точность и надежность и обычно применяются для контроля размеров с допусками не точнее 8 квалитета точности.



    Рис. 2.45.

    По назначению предельные калибры подразделяют на рабочие, приемные и контрольные.


    Рабочие калибры предназначены для контроля деталей в процессе их изготовления. Ими пользуются операторы и наладчики оборудования, а также контролеры ОТК завода- изготовителя.


    Приемные калибры применяют для приемки деталей представителями заказчика.


    Для установки регулируемых калибр-скоб и контроля нерегулируемых калибр-скоб, а также для изъятия из эксплуатации вследствие износа применяют контрольные калибры (К- И), которые имеют форму шайб (см. рис. 2.43, з). Несмотря на малый допуск контрольных калибров они все же искажают установленные поля допусков на изготовление и износ рабочих калибров, поэтому вместо них, по возможности, целесообразно применять концевые меры длины или универсальные измерительные приборы.


    Вставки и насадки калибр-пробок изготавливают из сталей X по ГОСТ 5950 - 2000 или ШХ-15 по ГОСТ 801-78. Допускается изготовление вставок и насадок из сталей У10А или У12А для калибров всех видов, кроме неполных калибр-пробок, получаемых штамповкой, а также из стали 15 или 20 для калибров диаметром более 10 мм.


    При изготовлении деталей калибров с рабочей поверхностью из цементуемой стали 15 или 20 толщина слоя цементации должна быть не менее 0,5 мм. Рабочие поверхности, а также поверхности заходных и выходных фасок (притуплений) калибр-пробок всех видов размером 1... 100 мм (кроме листовых и неполных калибр-про- бок) хромируют или наносят другое износостойкое покрытие.


    Твердость рабочих поверхностей и поверхностей заходных и выходных фасок калибр-пробок с хромовым покрытием - HRC3


    57...65. Параметры шероховатости рабочих поверхностей должны находиться в пределах Ra 0,04...0,32 мкм в зависимости от вида калибра, точности контролируемого параметра изделия и его размера.


    Для повышения износостойкости и снижения затрат в условиях производства часто применяют калибры со вставками и насадками из твердосплавных материалов (ГОСТ16775 - 93 - ГОСТ16780 - 71). Износостойкость таких калибров в 50... 150 раз выше по сравнению с износостойкостью хромированных калибров при повышении стоимости калибров в 3...5 раз.



    Рис. 2.46.

    Технические требования на гладкие нерегулируемые калибры устанавливает ГОСТ 2015 - 84.


    Маркировка калибра предусматривает номинальный размер детали, для которого предназначен калибр, буквенное обозначение поля допуска изделия, числовые значения предельных отклонений изделия в миллиметрах (на рабочих калибрах), тип калибра (например, ПР, НЕ, К-И) и товарный знак завода-изготовите- ля. На рис. 2.46 представлены эскизы калибр-пробки (ГОСТ 14810 - 69), калибр-скобы (ГОСТ 18360 - 93) и контрольного калибр-шайбы с указанием типовой маркировки, исполнительных размеров, точности формы и шероховатости рабочих поверхностей.



    Эти калибры (рис. 2.47) составляют особую группу. Конструктивно представляют собой ступенчатые пластины той или иной формы. ГОСТ 2534 - 77 предусматривает виды калибров с охватом размеров


    1...500 мм 11... 18 квалитетов точности. Калибрами определяют годность изделия по наличию зазора между соответствующими плоскостями калибра и изделия. Вместо проходной и непроходной сторон у этих калибров имеются стороны, соответствующие наибольшему (Б) и наименьшему (М) предельным размерам изделия.


    Основными методами контроля являются следующие методы: световой щели, или на просвет, надвигания, осязания, по рискам.


    От выбранного метода зависят и средства контроля:


    Калибры для контроля на просвет (рис. 2.47, а, б, в);


    Калибры для контроля методом надвигания (см. рис. 2.47, г, д, е);


    Калибры для контроля методом осязания (рис. 2.47, ж, з);


    Калибры для контроля по рискам (рис. 2.47, и, к).


    Калибрами по методу на просвет контролируют допуски не менее 0,04...0,06 мм. Минимальные допуски изделий, контролируемых ступенчато-стержневыми калибрами, составляют 0,03 мм, контролируемых по осязанию - 0,01 мм.





    Рис. 2.47.





    Рис. 2.48.


    В системе ИСО предельные калибры для глубин и высот не стандартизованы.


    Конусные калибры .


    Контроль наружных конусов выполняется конусными калибр-втулками, а контроль внутренних конусов - конусными калибр-пробками. ГОСТ 24932 - 81 устанавливает виды и исполнения калибров для гладких конусов с раздельным нормированием каждого вида допуска с диаметрами в заданном сечении до 200 мм, конусностью от 1:3 до 1:50, допусками диаметров 6... 12 квалитетов, допусками углов конусов 4...9 степеней точности. Некоторые представители конусных калибров изображены на рис. 2.48.


    Примеры обозначения :


    калибр-втулки 40 4-й и 5-й степени точности - «Втулка 40 АТ4, ГОСТ 20305 - 94»;


    контрольной калибр-пробки 60 6-й и 7-й степени точности - «Пробка 60-К АТ6, ГОСТ 20305 - 94».


    Калибры для контроля расположения поверхностей .


    Допуски, методика расчета исполнительных размеров и общие указания по применению калибров для контроля расположения поверхностей установлены ГОСТ 16085 - 80.


    Он распространяется на калибры неразъемной конструкции, предназначенные для контроля поверхностей (их осей или плоскостей симметрии) с зависимыми допусками расположения, а также для контроля прямолинейности оси при зависимом допуске формы.


    Измерительные поверхности калибров расположения представляют собой композицию элементов, воспроизводящих совокупность поверхностей сопрягаемых деталей.


    При этом размеры отдельных измерительных поверхностей выполняют по самому неблагоприятному для сборки размеру (по проходному пределу), а их относительное расположение или расположение относительно базового элемента с очень высокой точностью выдерживают по указанным на чертеже изделия номинальным размерам.


    Калибры контроля точности цилиндрических резьб .


    С помощью калибров используют комплексный и дифференцированный (поэлементный) методы. Комплексный метод применяют для резьбовых деталей, допуск среднего диаметра которых является суммарным. Он основан на одновременном контроле среднего диаметра (d2 (D2)), шага (Р), половины угла профиля (а/2), а также внутреннего (d, (D,)) и наружного (d (D)) диаметров резьбы путем сравнения действительного контура резьбовой детали с предельными.


    При дифференцированном методе контроля отдельно проверяют внутренний и наружный d диаметры, шаг Р и половину угла профиля а/2 с помощью обычных гладких калибров и шаблонов.


    Все виды калибров и контркалибров (всего 37 видов) для цилиндрических резьб (метрической, трапецеидальной, трубной и упорной) устанавливает ГОСТ 24939 - 81. Конструктивные размеры резьбовых калибров и их элементов регламентируют ГОСТ 18465-73 и ГОСТ 18466 - 73.


    В комплект резьбовых калибров входят рабочие гладкие и резьбовые проходные и непроходные калибры, калибры и контркалибры (КПР, ПР, КПР-НЕ, КНЕ-ПР, КНЕ-НЕ, КИ-НЕ, У-НЕ, У-ПР) для проверки и регулирования (установки) рабочих резьбовых скоб и колец.


    Условное обозначение (номер вида) некоторых калибров по ГОСТ 24997 -81:


    ПР (1) - калибр-кольцо резьбовой нерегулируемый;


    КПР-ПР (2) - калибр-пробка резьбовой контрольный проходной для нового резьбового проходного нерегулируемого калибр- кольца;


    КНЕ-НЕ (3) - калибр-пробка резьбовой контрольный непроходной для нового резьбового проходного нерегулируемого калибр-кольца;


    ПР (4) - калибр-кольцо резьбовой проходной регулируемый;


    ПР (7) - калибр-скоба резьбовой проходной;


    У-ПР (8) - калибр-пробка резьбовой установочный для резьбового проходного калибр-скобы.


    Проходные резьбовые калибры должны свинчиваться с проверяемой резьбой. Свинчиваемость калибра с гайкой означает, что приведенный средний и наружный диаметры резьбы гайки не выходят за установленные наименьшие предельные размеры.


    Маркировка резьбового калибра предусматривает нанесение обозначения резьбы, поля допуска резьбы, назначения калибра (например, ПР), товарного знака предприятия-изготовителя, а на калибрах с левой резьбой предусматривается добавление букв «Ш».


    На калибрах, используемых для собственных нужд предприятия-изготовителя, товарный знак может не наноситься.


    Номинальный шаг резьбы (или число ниток на дюйм) определяется с помощью резьбовых шаблонов (резьбомеров) (рис. 2.49, а). В соответствии с ТУ 2-034-228 - 87 резьбовые шаблоны выпускают наборами для метрической резьбы с шагом от 0,4 до 6 мм включительно (20 шаблонов) и для дюймовой резьбы с числом ниток на дюйм от 28 до 4 включительно (17 шаблонов).


    При наложении шаблона на профиль резьбы (рис. 2.49, б) следует использовать возможно большую его длину, так как это повышает точность определения шага.


    Комплексные проходные калибры .


    Точность размеров, формы и положения поверхностей у деталей с прямобочными шлицами, как правило, контролируют комплексными проходными калибрами (ГОСТ 24959-81, ГОСТ 24960-81): шлицевые втулки проверяют калибр-пробками, а шлицевые валы - калибр-кольцами.



    Рис. 2.49. Резьбовые шаблоны (резьбомеры): а - набор; б - принцип контроля



    Рис. 2.50. Калибры-щупы (а) и контроль с помощью щупов (б, в]

    При необходимости производят также поэлементный контроль центрирующих и нецентрирующих диаметров, ширины впадин и шлицев специальными гладкими калибрами по ГОСТ 24961-81 - ГОСТ 24968-81.


    Условное обозначение калибра состоит из наименования калибра («пробка» или «кольцо»), номера вида калибра, условного обозначения шлицевой втулки вала, для которых предназначен данный калибр, степени точности калибра и обозначения стандарта.


    Примеры обозначения :


    калибр-кольца 1-го вида 4-й степени точности для вала 50х2х9дпо ГОСТ 6033 - 80- «Кольцо 1-50х2х9g/4, ГОСТ 24969 - 81»;


    комплексного калибр-пробки 5-го вида 4-й степени точности для шлицевой втулки 50х2х9Н по ГОСТ 6033 - 80- «Пробка 5-50х 2 х 9Н/4 ГОСТ 24969-81».


    Калибры-щупы .


    Это нормальные калибры для проверки зазора между поверхностями (рис. 2.50). Щупы представляют собой пластины с параллельными измерительными плоскостями. В соответствии с ТУ 2-034-0221197 - 91 щупы изготавливаются длиной 100 и 200 мм. Щупы длиной 100 мм могут изготавливаться отдельными пластинами и наборами (четырех номеров), включающими следующие номинальные размеры пластин:


    набор № 1 (9 щупов) - с толщиной от 0,02 до 0,1 мм с градацией через 0,01 мм;


    набор № 2 (17 щупов) - с толщиной от 0,02 до 0,5 мм;


    набор № 3 (10 щупов) - с толщиной от 0,055 до 1 мм с градацией через 0,05 мм;


    набор № 4 (10 щупов) - с толщиной от 0,1 до 1 мм с градацией через 0,1 мм.


    При применении щупов либо используется один из них, либо складываются два и более щупа для набора требуемой толщины.


    Допускаемые отклонения толщины новых щупов колеблются от 5 до 15 мкм в зависимости от их номинальной толщины. При применении набора щупов погрешность контроля увеличивается.