Экология. Основы экологии Биотический потенциал вида разных

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. Гипотетически скорость роста популяции зависит только от биотического потенциала, свойственного виду. Понятие биотического потенциала введено в экологию в 1928 г. Р. Чепменом. Этим показателем характеризуется теоретический максимум потомков от одной пары (или одной особи) за единицу времени, например за год или за весь жизненный цикл.

При расчетах биотический потенциал чаще всего выражают коэффициентом , означающим максимально возможный прирост популяции за отрезок времени , отнесенный к одной особи, при начальной численности популяции :

Уравнение (5.1) можно переписать в виде выражения

откуда численность популяции в момент времени

Таким образом, теоретически скорость естественного роста популяции в не лимитированной каким-либо фактором среде характеризуется экспоненциальным законом.

Понятно, что в природных условиях экспоненциальный закон роста численности популяции никогда не реализуется полностью. Биотический потенциал определяется как разность между рождаемостью и смертностью в популяциях: , где – число родившихся, а – число погибших особей в популяции за один и тот же период времени. Общие изменения численности популяции складываются из следующих факторов: рождаемости, смертности, конкуренции, вселения и выселения особей (миграции).

Рождаемость – это число новых особей, появляющихся в популяции за единицу времени в расчете на определенное число ее членов. Различают абсолютную и удельную рождаемость.

Абсолютная рождаемость характеризует общее число особей, появившихся в популяции за единицу времени, а удельная рождаемость – среднее изменение численности на особь за определенный промежуток времени.

Смертность также подразделяется на абсолютную и удельную и характеризует скорость убывания численности популяции вследствие гибели особей от хищников, болезней, старости и пр.

В замкнутых популяциях, в которых отсутствует миграция, полное изменение численности определяется соотношением рождаемости и смертности. Если рождаемость выше смертности, то удельная скорость роста положительная, а если смертность выше рождаемости, то отрицательная. В этом случае численность популяции убывает.

Рождаемость, смертность, динамика численности напрямую связаны с возрастной структурой популяции. Чтобы описать возрастную структуру, в популяции выделяют возрастные группы, состоящие из организмов одного возраста, и оценивают численность каждой из этих групп. Результат обычно представляют в виде диаграммы. Диаграмма имеющая вид трапеции, расширяющейся книзу, свидетельствует о том, что рождаемость выше смертности и численность популяции растет. Если же особей младших возрастных групп меньше, чем старших, то численность будет сокращаться.

Расселение , заключающееся в выселении особей из популяции или пополнении ее пришельцами, – закономерное явление, основанное на одной из важнейших биологических черт вида – его расселительной способности.

В каждой популяции того или иного вида часть особей регулярно покидает ее, пополняя соседние или заселяя новые, еще не занятые видом территории. Этот процесс часто называют дисперсией популяции. Расселение приводит к занятию новых биотопов, расширению общего ареала вида, его успеху в борьбе за существование.

Расселительная дисперсия служит средством связи между популяциями. Она повышается при увеличении плотности популяции. В период депрессии численности, наоборот, усиливается поток вселенцев в популяцию. У оседлых животных с хорошо выраженными территориальными инстинктами агрессивное поведение по отношению к пришельцам в период низкой численности популяции ослабевает, и вселенцы занимают свободные участки.

Некоторые популяции, занимающие малопригодные для обитания места, часто не могут поддерживать свою численность путем размножения и сохраняются преимущественно благодаря иммиграции. Такие популяции В.А. Беклемишев называл зависимыми.

Прогнозирование численности популяции является довольно сложной задачей, требующей знания многих факторов. Должны быть известны возрастная структура популяции, ее половой состав, плодовитость разных возрастных групп, репродуктивный возраст в популяции, расселительные возможности и т.п.

Математические модели, построенные на основе этих показателей, достаточно сложны и требуют для расчетов использования различных математических методов и вычислительной техники.

Если смертность в замкнутых системах выше рождаемости, то убывание численности тоже описывается уравнением (5.4), но с отрицательным . Такой процесс называют экспоненциальным затуханием численности.

Модель динамики численности популяции при ограниченных ресурсах предложил в 1845 г. французский математик Ферхюльст. Уравнение, которое носит его имя, имеет вид

Уравнение Ферхюльста отличается от уравнения экспоненциального роста тем, что к его правой части добавляется выражение – . Это выражение учитывает число встреч животных, во время которых они могут конкурировать за какой-либо ресурс. Вероятность встречи двух особей пропорциональна квадрату численности (точнее, плотности) популяции.

Рост численности популяции многих животных действительно ограничивается именно частотой встреч особей.

Уравнение (5.5) можно переписать следующим образом

Выражение в скобках представляет собой удельную скорость роста численности. Здесь она непостоянна и убывает с увеличением численности популяции. Это отражает усиление конкуренции за ресурсы по мере роста численности.

Если в правой части уравнении (5.5) вынести за скобки выражение и обозначить через , то получим

Если мало по сравнению с , то выражение в скобках близко к единице, при этом уравнение (5.7) переходит в уравнение экспоненциального роста (5.4). Когда близко к , выражение в скобках близко к нулю, т.е. численность популяции перестает увеличиваться. Отсюда ясно, что в данной модели – это вместимость среды. При прирост численности становится отрицательным и она убывает до величины, равной вместимости среды.

График зависимости численности популяции от времени, соответствующий решению уравнения (5.7), представляет собой S-образную кривую. Эта кривая называется логистической кривой , а рост численности, соответствующий уравнению (5.7), – логистическим ростом .

На логистической кривой есть точка, где абсолютная скорость роста численности максимальна. Можно показать, что максимальная скорость роста достигается, когда численность равна .

Однако правила логистического роста применимы не ко всем случаям. Например, при слишком низкой численности у размножающихся половым путем видов мала вероятность встреч особей разного пола, отчего размножение может вообще прекратиться.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Допущено к изданию редакционно-издательским советом университета
В конспекте лекций излагаются основные положения современной экологии; рассматриваются экосистемы и биосфера в целом, взаимосвязь потоков вещества и энергии в экосистемах, вопр

Предмет и задачи экологии
Русский писатель В.Г. Распутин, одним из первых вступивший на защиту национальной святыни – жемчужины планеты озера Байкал, сказал: «Природа сама по себе всегда нравственна, безнравственной ее може

Космос и земля. Структура биосферы
Случилось невероятное. Не было взрывов, бомбардировок, не падали с неба метеориты. Однако мощная энергетическая система канадской провинции Квебек (и ряда прилегающих штатов США) вдруг вышла из стр

Магнитный щит Земли
Можно сказать, что Земля находится в плазменной короне Солнца и постоянно им облучается. Единственной защитой от прямого воздействия Солнца на все живое на Земле является ее магнитное поле, значите

Космоприземные пульсации и жизнь
Пульсация магнитной активности Солнца, влияние магнитного поля Луны приводят к изменению напряженности магнитосферы Земли, цикличности изменения радиационной и тепловой обстановки на ее поверхности

Геосферы Земли, их строение и функции
Структура нашей планеты неоднородна и состоит из различных геосфер, которые в основном повторяют общую форму планеты – сферу. В центре Земли имеется ядро (R ~ 3500 км). Ядро окружено

Распределение жизни в биосфере
По одной из версий жизнь появилась локально в водоемах и затем распространялась все шире и шире, заняв все материки. Постепенно она захватила всю биосферу, и захват этот, по мнению В.И. Вернадского

Организм, среда обитания, видообразование
Суммарный химический состав живых организмов во многом отличается от состава гидросферы и литосферы. Он ближе к химическому составу гидросферы по абсолютному преобладанию атомов водорода и кислород

Вид и видообразование
Современное представление о виде сложилось только к середине ХХ в. в рамках синтетической теории эволюции благодаря трудам многих выдающихся биологов: Н.И. Вавилова, Э. Майра, Дж. Гексли и др.

Генофонды и их изменения
Итак, каждая особь имеет два полных набора генов, а следовательно, может быть два различных аллеля любого гена. В крупной популяции может быть множество аллелей многих тысяч генов, входящих в генот

Изменение генофонда путем искусственного отбора
Генофонд можно изменять целенаправленно с помощью искусственного отбора. Селекционеры сначала выбирают признаки, которые они хотели бы развить у данного вида, а затем из поколения в поколение осуще

Изменение генофонда путем естественного отбора
В природе на популяции непрерывно действует естественный отбор. Каждая популяция отражает равновесие между ее биологическим потенциалом, способствующим росту численности, и сопротивлением среды, ог

Адаптации к нише и местообитанию
Признаки, способствующие выживанию организма, постепенно усиливаются под действием естественного отбора до тех пор, пока не достигается максимальная приспособленность к существующим условиям. Таким

Основные среды жизни и адаптации к ним организмов. Факторы среды, общие закономерности их действия на живые организмы
Cреда обитания – это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое

Изменчивость экологических факторов
Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Некоторые свойства среды остаются относительно постоянными на протяжении длительных

Понятие об экологической нише
Любой живой организм приспособлен (адаптирован) к определенным условиям окружающей среды. Изменение ее параметров, их выход за некоторые границы толерантности подавляют жизнедеятельность организмов

Колебания численности популяции и их причины
В естественных условиях численность популяций подвержена постоянным колебаниям. Амплитуда и период этих колебаний зависят от нескольких причин, в частности от особенностей вида и от условий среды о

Влияние плотности популяции
Разнообразные факторы, влияющие на численность популяции, подразделяются на зависящие и не зависящие от ее плотности. К не зависящим от плотности факторам относят абиотические факторы сред

Механизм действия факторов, зависящих от плотности. Обратные связи и гомеостаз в популяциях
Важная особенность зависящих от плотности факторов состоит в том, что их воздействие обычно сглаживает колебания численности, при возрастании плотности популяций способствует возвращению ее к средн

Понятие экосистемы
Биоценоз – совокупность живых организмов (микроорганизмов, растений, животных), взаимно зависимых и размножающихся в каком-то определенном месте. Это высший уровень организации живого.

Другие абиотические факторы и микроклимат
Действие многих абиотических факторов, таких как рельеф, ветер, тип почвы, проявляется через температуру и/или влажность. В результате на небольшом участке земной поверхности климатические условия

Взаимодействие биотических и абиотических факторов
Ни один из факторов среды не действует на экосистему изолированно, без взаимосвязи с другими факторами. Конечное состояние – результат последовательных многочисленных взаимодействий различных абиот

Взаимодействие живых организмов
Живые организмы поселяются друг с другом не случайно, а образуют сообщества, приспособленные к совместному обитанию. Среди огромного разнообразия взаимосвязей живых существ выделяют типы отношений,

Видовое богатство и видовое разнообразие. Факторы, влияющие на видовое разнообразие. Экологическая структура сообществ
Видовое разнообразие – показатель, учитывающий и число видов, и степень «выравненности» их численности и биомассы. На видовое разнообразие влияют возраст сообщества, устойчивость климата, пр

Экологическая структура сообществ
Сообщества характеризуются не только видовым составом, но и соотношением видов. Экологическая структура – это соотношение групп видов, занимающих определенные экологические ниши и выполняющи

Жизнь как термодинамический процесс. Обмен веществ и энергии в клетке
Главным условием жизни как организма в целом, так и отдельной клетки является обмен веществ и энергии с окружающей средой. Для поддержания сложной динамической структуры живой клетки требуется непр

Энергетический обмен (диссимиляция)
Образующиеся в процессе фотосинтеза органические вещества и заключенная в них химическая энергия служат основным источником материи и энергии для жизнедеятельности всех организмов. Однако использов

Пластический обмен (ассимиляция)
По типу ассимиляции все клетки делятся на две группы – автотрофные и гетеротрофные. Автотрофные клетки способны к самостоятельному синтезу необходимых для них органических соединени

Термодинамика экосистем
Из определения экосистемы (совокупности организмов и неорганических компонентов, в которых осуществляются круговорот веществ и обмен энергией) создается впечатление, что экосистеме не присущи проце

Жизнь как термодинамический процесс
Жизнь – особая форма существования и преобразования материи, высшая по сравнению с физической и химической формами. Непрерывный поток солнечной энергии, воспринимаясь молекулами живых клет

Трофические цепи и сети
В основе существования любой экосистемы лежат пищевые (трофические) цепи, которые возникают тогда, когда один вид питается другим – либо живыми особями, либо их мертвыми остатками, либо продуктами

Биологическая продуктивность экосистем
Скоростью, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяется продуктивность сообществ. Органическую массу, создавае

Циркуляционные процессы в биосфере
Все вещества на нашей планете находятся в процессе биохимического круговорота. Выделяют два основных круговорота: большой (геологический) и малый (биотический). Большой круговорот длится с

Образование кислорода в атмосфере
Разложение органических веществ, при котором освобождается химическая энергия, характерно для всех частей биосферы, тогда как фотосинтез протекает только на поверхности суши и в верхних слоях водое

Круговорот углерода
Круговорот углерода совершается по большому и малому циклам. Биологический круговорот углерода – составная часть большого круговорота, который связан с жизнедеятельностью организмов. Углер

Круговорот фосфора
К круговороту основных биогенных элементов, имеющих газовую фазу, примыкают так называемые осадочные круговороты, из которых важнейшим является круговорот фосфора. Минеральный фосфор – ред

Динамика экосистем
Естественные экологические системы (биогеоценозы), например леса, степи, водоемы, существуют в течение длительного времени – десятков и даже сотен лет, т.е. обладают определенной стабильностью во в

Причины возникновения сукцессии
Сукцессия (лат. successio – преемственность, наследование) – это процесс саморазвития сообществ. В основе сукцессий лежит неполнота биологического круговорота в данном ценозе. Кажды

Первичная сукцессия
Первичной сукцессией называется процесс развития и смены экосистем на незаселенных ранее участках, начинающихся с их колонизации. Классический пример – постепенное обрастание голой скалы с р

Вторичная сукцессия
Если поля на месте вырубленного когда-то леса перестать обрабатывать, обычно со временем здесь вновь сформируется лесная экосистема, типичная для данного региона. Восстановление экосистемы, когда-т

Климаксовая экосистема
Сукцессия завершается стадией, на которой экосистемы всех видов, размножаясь, сохраняют относительно постоянную численность и дальнейшей смены ее состава не происходит. Такое равновесное состояние

Сукцессия, нарушение или гибель
То, насколько быстро меняются экосистемы, зависит от степени сдвига их равновесия. При сукцессиях изменения происходят медленно и постепенно; это более или менее упорядоченный процесс замещения одн

Рождаемость и смертность - важнейшие факторы колебания численности популяции. Они напрямую связаны с биотическим потенциалом вида. Данное явление усиленно изучают экологи. Что такое биотический потенциал вида? Это максимальное количество потомков, которое может обеспечить одна особь за единицу времени.

От чего зависит биотический потенциал вида?

Численность популяции многих редких животных находится под строгим контролем. Долгое время биологи и экологи задавались вопросом, от чего зависит биотический потенциал вида. Не так давно ученым удалось найти ответ на этот вопрос.

Биотический потенциал вида зависит от продолжительности жизни особи и возраста достижения ею генеративного состояния. Этот показатель колеблется у разных групп организмов и видов. Количество потомков, появившихся в том или ином году, тоже изменчиво, но еще более существенна для популяции их выживаемость, зависящая от уровня смертности в каждом возрасте.

Продолжительность жизни

Если старение организмов является основной причиной смертности, то в этом случае наблюдается незначительное падение численности в раннем возрасте. Примером таких популяций служат виды однолетних растений и некоторых мышевидных грызунов.

В природных условиях достаточно редкий случай - вид с высокой смертностью в раннем возрасте, относительной устойчивостью в генеративном периоде и возрастанием смертности к концу жизненного цикла.

Наконец, третий тип характеризуется равномерной смертностью на протяжении всего жизненного цикла. В этом случае значительную роль, например, у растений, играют внутрипопуляционные конкурентные отношения. Такой тип характерен для древостоев ельников и сосняков одного возраста.

Перемещение из одной популяции в другую

От чего зависит биотический потенциал вида помимо продолжительности жизни? Кроме соотношения рождаемости и смертности, на численность популяций большое влияние оказывает перемещение особей из одной популяции в другую. У растений наиболее заметно вселение новых особей, когда на территорию популяции попадают зачатки (семена, споры) из других мест обитания.

При достаточно высокой численности местной популяции они, как правило, не меняют ситуацию, поскольку погибают в условиях конкуренции. В иных случаях могут увеличить численность своей популяции. Миграции животных происходят либо при повышении численности, либо при ее снижении, что в любом случае изменяет численность. Часто миграции связаны с расселением молодняка животных. В целом перемещение организма - один из механизмов, регулирующих численность и способ межпопуляционных связей.

Конкуренция

Поддержание численности возможно за счет увеличения иммиграции. При высокой рождаемости равенство достигается за счет эмиграции избытка особей. В остальных случаях численность популяции теряет устойчивость. Ее колебания не носят случайного характера, поскольку существует ряд механизмов, регулирующих ее в определенных пределах, близких к норме.

Остановимся на некоторых из этих механизмов. Конкуренция - это то, от чего зависит биотический потенциал вида. Это явление характерно не только для животных, но и для растений. Так, к гибели избыточного количества особей приводит внутрипопуляционная конкуренция. В результате происходит самоизреживание у растений. При сильном загущении всходов физиологически более слабые погибают.

У многолетних растений, например, у деревьев, этот процесс продолжается многие годы. Это можно наблюдать в загущенных искусственных насаждениях сосны или дуба. Компромиссная ситуация нередко возникает на лугах, когда уменьшается число побегов и общая масса популяции. В этом случае стабилизация идет не за счет числа особей, а за счет их биомассы.

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В таком гипотетическом случае скорость роста популяции будет зависеть только от величины биотического потенциала, свойственного виду. Понятие биотического потенциала введено в экологию в 1928 г. Р.Чепменом. Этот показатель отражает теоретический максимум потомков от одной пары (или одной особи) за единицу времени, например за год или за весь жизненный цикл.

При расчетах его чаще всего выражают коэффициентом г и вычисляют как максимально возможный прирост популяции ΔN за отрезок времени Δt, отнесенный к одной особи, при начальной численности популяции N 0:

Величина биотического потенциала чрезвычайно различна у разных видов. Например, самка косули способна произвести за жизнь 10-15 козлят, трихина (Trichinella spiralis) - отложить 1,8 тыс. личинок, самка медоносной пчелы - 50 тыс. яиц, а луна‑рыба - до 3 млрд икринок. Если бы все зародыши сохранялись, а все потомство выживало, численность любой популяции через определенные интервалы увеличивалась бы в геометрической прогрессии.

Кривая, отражающая на графике подобный рост популяции, быстро увеличивает крутизну и уходит в бесконечность (рис. 122). Такая кривая носит название экспоненциальной. На логарифмической шкале подобная зависимость численности популяции от времени будет представлена прямой, а биотический потенциал г отразится ее наклоном по отношению к горизонтальной оси, который тем круче, чем больше величина r.

Рис. 122. Реальная (1) и теоретическая (2) кривая роста популяции парамеций

В природе биотический потенциал популяции никогда не реализуется полностью. Его величина обычно складывается как разность между рождаемостью и смертностью в популяциях: r = b - d, где b - число родившихся, а d - число погибших особей в популяции за один и тот же период времени.

Общие изменения численности популяции складываются за счет четырех явлений: рождаемости, смертности, вселения и выселения особей (иммиграция и эмиграция).

популяция генетический биотический потенциал

Плодовитость насекомых и способность их к размножению часто необычайно велика. Нередко эту способность к размножению обозначают понятием потенциал размножения, или биотический потенциал . Наиболее рационально им обозначать не плодовитость вида вообще, а теоретический максимум потомков, получаемый от одной пары особей (при партеногенезе -- от одной особи) за весь год. Например, яблонная плодожорка, откладывает в среднем 100 яиц, поэтому ее биотический потенциал при двух поколениях составит на одну пару особей (при равном числе самцов и самок в популяции) 50 2 , т. е. 2500. У тлей, дающих за лето до 15 и более партеногенетических поколений при той же самой плодовитости, т. е. 50 особей на самку, биотический потенциал достигает астрономических показателей -- в данном примере 50 15 , т. е. миллиарды миллиардов особей.

Академик В. И. Вернадский рассматривал размножение организмов как проявление одного из свойств живой материи -- способность распространяться по земной поверхности в результате производимой химической работы и создания новых количеств живого вещества. Эту способность он обозначил понятием скорость передачи жизни, которая является величиной постоянной и характерной для каждого вида организмов; она определяется размерами и массой тела, половой продуктивностью, числом поколений в тот или иной отрезок времени и требованиями к среде обитания. В целом скорость передачи жизни характеризует геохимическую энергию видов и выражается числом см/с.

Например, скорость передачи жизни у нестадных саранчовых со-ставляет примерно 13--15 см/с, а у лугового мотылька--45 см/с; это значит, что распространение этих насекомых завершилось бы на Земле, учитывая длину экватора примерно в 40 тыс. км, в первом случас в течение около 9 лет, а во втором -- около 3 лет.

Биотический потенциал и скорость передачи жизни являются теоре-тическими абстракциями и в реальной природе размножение организмов никогда не соответствует этим величинам. Однако оба эти понятия ценны тем, что позволяют установить для видов численные показатели их потенциальной энергии размножения

Невозможность полной реализации в природе биотического потенциала видов -- следствие ограничивающего воздействия внешней среды: под ее воздействием происходит либо снижение плодовитости, либо гибель части потомства. В целом громадная воспроизводительная способность насекомых страхует их от полной гибели и вымирания в природе при возникновении неблагоприятных условий среды.

Предположим, что самка данного вида откладывает в среднем 200 яиц (плодовитость F равна 200) и смертность на протяжении всего развития равна нулю. Если соотношение полов в потомстве, как чаще всего бывает 1:1 (доля самок q = 0,5), то это означает, что в первом поколении будет Fq т.е. 200 0,5 = 100 самок. Каждая из этих самок в следующем поколении даст жизнь еще сотне самок, в результате чего во втором поколении будет 10000 самок. Очевидно, что в n-ном поколении число самок может быть рассчитано по следующей формуле:

Если же исходно мы имеем не одну самку, а N самок, то через n поколений их будет:

Очевидно, что при таких условиях численность популяции будет круто возрастать по экспоненте (степенной функции). Смена поколений все же занимает некоторое время. Тогда скорость изменения численности при большом количестве поколений или их быстрой смене можно представить как результат деления прироста численности на интервал времени (абсолютная скорость роста популяции), или из расчета на исходное число особей -

При последовательном уменьшении интервала времени (0) мы получаем мгновенную скорость роста популяции - r (биотический потенциал ):

Возвращаясь к формуле роста популяции (1), мы можем теперь ее написать следующим образом:

где - численность популяции через время t, N - исходная численность популяции, е - основание натуральных логарифмов, r - биотический потенциал, t - интервал времени. График этой экспоненциальной (показательной) функции представлен на рис.27. Если логарифмировать формулу 3, получим следующее выражение:

График этой функции - прямая линия. Биотический потенциал на этом графике может быть представлен как тангенс угла наклона графика к оси абсцисс. Очевидно, что биотический потенциал - не чисто умозрительная категория. Зная численность популяции N в момент времени t, и последующую численность N в момент t , можно определить биотический потенциал по формуле:

В начале мы приняли, что смертность насекомых в течение развития равна нулю. При такой ситуации биотический потенциал будет максимально возможным в данных условиях. В природе же это условие практически никогда не выполняется и определяемый биотический потенциал будет определяться разностью между плодовитостью и смертностью. Благодаря стремлению размножаться, насекомые могли бы увеличивать свою численность беспредельно, если бы не тормозящие рост популяции факторы, снижающие плодовитость или приводящие часть насекомых к гибели. Такое сопротивление среды можно определить как разность между максимально возможным и реально наблюдаемым биотическим потенциалом .

Часто используемое в экологической литературе выражение «природное равновесие» означает состояние сбалансированности (динамического равновесия), характерное для большинства популяций в сообществе; было бы совершенно неправильно понимать в этом случае равновесие как статическое состояние. Изучение колебаний численности животных - важнейшая область экологии, оказывающая влияние на такие казалось бы далекие сферы науки и деятельности, как генетика, сельское хозяйство и медицина.

Сезонные и циклические (охватывающие, как правило, несколько лет) колебания численности уже давно интересовали натуралистов, которые пытались установить корреляции между наблюдаемыми популяционными процессами и различными климатическими факторами. В практическом отношении данная проблема очень важна: от ее решения зависят прогнозы массового размножения вредных насекомых или вспышек эпидемий. Совершенно независимо специалисты, изучающие механизмы естественного отбора, стали интересоваться математическим описанием распространения в популяции новых генетических вариантов организмов. Чтобы провести соответствующие расчеты, необходимо было иметь данные о действительной плотности популяций и о том, насколько быстро она изменяется. Скорость, с которой идет распространение нового генетического варианта, очевидно, будет разной в зависимости от того, возрастает, сокращается или остается стабильной численность популяции в данный период. Генетики обнаружили, что распространение генов в популяции может носить характер правильных циклических колебаний. В целом изучение динамики численности животных чрезвычайно важно для решения самых разных биологических проблем. Динамика популяций растений изучена в меньшей степени, может быть, в связи с относительной стабильностью их распространения.

При изучении динамики популяций широко используется такое важное понятие, как «биотический потенциал», т.е. характерная для данного вида скорость размножения (на величину которой влияют соотношение полов, количество потомков на одну самку, а также число поколений в единицу времени). Биотический потенциал многих организмов, прежде всего наиболее мелких, огромен, и если бы ничто не сдерживало рост их популяций, то они чрезвычайно быстро заселили бы собой всю Землю. Численность любой существующей популяции может быть представлена как отношение биотического потенциала к сопротивлению среды, т.е. к сумме всех факторов, тормозящих рост численности данного вида. Поскольку реальные популяции растений и животных более или менее стабильны во времени, сопротивление среды по отношению к видам с высоким биотическим потенциалом должно быть достаточно сильным.

При благоприятных условиях в популяциях наблюдается рост численности и может быть столь стремительным, что приводит к популяционному взрыву. Совокупность всех факторов способствующих росту численности называется биотическим потенциалом. Он достаточно высок для разных видов, но вероятность достижения популяцией предела численности в естественных условиях низка, т.к. этому противостоят лимитирующие (ограничивающие) факторы. Совокупность факторов, лимитирующих рост численности популяции, называют сопротивлением среды. Состояние равновесия между биотическим потенциалом вида и сопротивлением среды (рис. 1), поддерживающее постоянство численности популяции получило название гомеостаза или динамического равновесия. При нарушении его происходят колебания численности популяции, т. е. изменения ее.