Закон кулона в скалярной форме. Закон кулона простыми словами

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Полезное

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними.

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

\[ F = k \cdot \dfrac{\left|q_1 \right| \cdot \left|q_2 \right|}{r^2} \]

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

\[ k=\frac{1}{4\pi \varepsilon _0} \]

Полная формула закона Кулона:

\[ F = \dfrac{\left|q_1 \right|\left|q_2 \right|}{4 \pi \varepsilon_0 \varepsilon r^2} \]

\(F \) - Сила Кулона

\(q_1 q_2 \) - Электрический заряд тела

\(r \) - Расстояние между зарядами

\(\varepsilon_0 = 8,85*10^{-12} \) - Электрическая постоянная

\(\varepsilon \) - Диэлектрическая проницаемость среды

\(k = 9*10^9 \) - Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: \(\vec{F}_{12}=\vec{F}_{21} \) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

    Существует два рода электрических зарядов, условно названных положительными и отрицательными.

    Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

    Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов - то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов . Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд.
  • Взаимодействие зарядов в вакууме .

В Международной системе СИ за единицу заряда принят кулон (Кл) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Методы экспериментальной проверки закона Кулона

1. Метод Кавендиша (1773):

Ø заряд на проводящей сфере распределяется только по ее поверхности;

Ø Уильямс, Фоллер и Хилл-1971

2. Метод Резерфорда:

Ø опыты Резерфорда по рассеянию альфа-частиц на ядрах золота (1906)

Ø эксперименты по упругому рассеянию электронов с энергией порядка 10 +9 эВ

3. Резонансы Шумана:

Ø если для фотона, то ;

Ø для фотона можно записать;

Ø для v=7.83 Гц получим для

Принцип суперпозиции для электростатических сил

Формулировка:

Если электрически заряженное тело взаимодействует одновременно с несколькими электрически заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел

Электрический диполь: физическая модель и дипольный момент диполя; электрическое поле, создаваемое диполем; силы, действующие со стороны однородного и неоднородного электрических полей на электрический диполь.

Электрический диполь – система, состоящая из двух разноименных точечных электрических зарядов, модули которых равны:

Плечо диполя; O – центр диполя;

Дипольный момент электрического диполя:

Единица измерения - =Кл*м

Электрическое поле, создаваемое электрическим диполем:
Вдоль оси диполя:


Силы, действующие на электрический диполь

Однородное электрическое поле:

Неоднородное электрическое поле:

Концепция близкодействия, электрическое поле. Полевая трактовка закона Кулона. Напряженность электростатического поля, силовые линии. Электрическое поле, создаваемое неподвижным точечным зарядом. Принцип суперпозиции электростатических полей.

Дальнодействие – концепция классической физики, согласно которой физические взаимодействия передаются мгновенно без участия какого-либо материального посредника

Близкодействие – концепция классической физики, согласно которой физические взаимодействия передаются с помощью особого материального посредника со скоростью, не превышающей скорость света в вакууме

Электрическое поле – это особый вид материи, одна из составляющих электромагнитного поля, которое существует вокруг заряженных частиц и тел, а также при изменении в течение времени магнитного поля

Электростатическое поле – это особый вид материи, существующий вокруг неподвижных заряженных частиц и тел

В соответствии с концепцией близкодействия неподвижные заряженные частицы и тела создают в окружающем пространстве электростатическое поле, которое оказывает силовое воздействие на помещенные в это поле другие заряженные частицы и тела

Таким образом, электростатическое поле является материальным переносчиком электростатических взаимодействий. Силовой характеристикой электростатического поля является локальная векторная физическая величина – напряженность электростатического поля. Напряженность электростатического поля обозначается латинской буквой: и измеряется с системе единиц СИ в вольтах разделить на метр:

Определение: отсюда

Для поля, создаваемого неподвижным точечным электрическим зарядом:

Силовые линии электростатического поля

Для графического (наглядного) изображения электростатических полей применяются

Ø касательная к силовой линии совпадает с направлением вектора напряженности электростатического поля в данной точке;

Ø густота силовых линий (их число на единицу нормальной поверхности) пропорциональна модулю напряженности электростатического поля;

силовые линии электростатического поля:

Ø являются разомкнутыми (начинаются на положительных и заканчиваются на отрицательных зарядах);

Ø не пересекаются;

Ø не имеют изломов

Принцип суперпозиции для электростатических полей

Формулировка:

Если электростатическое поле создается одновременно несколькими неподвижными электрически заряженными частицами или телами, то напряженность данного поля равна векторной сумме напряженностей электростатических полей, которые создаются каждой из этих частиц или тел независимо друг от друга

6. Поток и дивергенция векторного поля. Электростатическая теорема Гаусса для вакуума: интегральная и дифференциальная формы теоремы; ее физические содержание и смысл.

Электростатическая теорема Гаусса

Поток векторного поля

Гидростатическая аналогия:

Для электростатического поля:

Поток вектора напряженности электростатического поля через поверхность пропорционален числу силовых линий, которые пересекают эту поверхность

Дивергенция векторного поля

Определение:

Единицы измерения:

Теорема Остроградского:

Физический смысл: расходимость вектора, указывает на наличие источников поля

Формулировка:

Поток вектора напряженности электростатического поля через замкнутую поверхность произвольной формы пропорционален алгебраической сумме электрических зарядов тел или частиц, которые находятся внутри этой поверхности.

Физическое содержание теоремы:

*закон Кулона, поскольку является его прямым математическим следствием;

*полевая трактовка закона Кулона на основе концепции близкодействия электростатических взаимодействий;

*принцип суперпозиции электростатических полей

Применение электростатической теоремы Гаусса для расчета электростатических полей: общие принципы; расчет поля равномерно заряженной бесконечно длинной тонкой прямой нити и равномерно заряженной безграничной плоскости.

Применение электростатической теоремы Гаусса

Основной закон взаимодействия электрических зарядов был найден Шарлем Кулоном в 1785 г. экспериментально. Кулон установил, что сила взаимодействия между двумя небольшими заряженными металлическими шариками обратно пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

,

где -коэффициент пропорциональности
.

Силы, действующие на заряды , являются центральными , то есть они направлены вдоль прямой, соединяющей заряды.


Закон Кулона можно записать в векторной форме :
,

где -со стороны заряда,

- радиус-вектор, соединяющий заряд с зарядом;

- модуль радиус-вектора.

Сила, действующая на заряд со стороныравна
,
.

Закон Кулона в такой форме

    справедлив только для взаимодействия точечных электрических зарядов , то есть таких заряженных тел, линейными размерами которых можно пренебречь по сравнению с расстоянием между ними.

    выражает силу взаимодействия между неподвижными электрическими зарядами, то есть это электростатический закон.

Формулировка закона Кулона :

Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности в законе Кулоназависит

    от свойств среды

    выбора единиц измерения величин, входящих в формулу.

Поэтому можно представить отношением
,

где -коэффициент, зависящий только от выбора системы единиц измерения ;

- безразмерная величина, характеризующая электрические свойства среды, называется относительной диэлектрической проницаемостью среды . Она не зависит от выбора системы единиц измерения и равна единице в вакууме.

Тогда закон Кулона примет вид:
,

для вакуума
,

тогда
-относительная диэлектрическая проницаемость среды показывает, во сколько раз в данной среде сила взаимодействия между двумя точечными электрическими зарядами и, находящимися друг от друга на расстоянии, меньше, чем в вакууме.

В системе СИ коэффициент
, и

закон Кулона имеет вид :
.

Это рационализированная запись закона К улона.

- электрическая постоянная,
.

В системе СГСЭ
,
.

В векторной форме закон Кулона принимает вид

где -вектор силы, действующей на заряд со стороны заряда ,


- радиус-вектор, соединяющий заряд с зарядом

r –модуль радиус-вектора .

Всякое заряженное тело состоит из множества точечных электрических зарядов, поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна векторной сумме сил, приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами .

    На всякий другой заряд, внесенный в это пространство, действуют электростатические силы Кулона.

    Если в каждой точке пространства действует сила, то говорят, что в этом пространстве существует силовое поле.

    Поле наряду с веществом является формой материи.

    Если поле стационарно, то есть не меняется во времени, и создается неподвижными электрическими зарядами, то такое поле называется электростатическим.

Электростатика изучает только электростатические поля и взаимодействия неподвижных зарядов.

Для характеристики электрического поля вводят понятие напряженности . Напряженность ю в каждой точке электрического поля называется вектор , численно равный отношению силы, с которой это поле действует на пробный положительный заряд, помещенный в данную точку, и величины этого заряда, и направленный в сторону действия силы.

Пробный заряд , который вносится в поле, предполагается точечным и часто называется пробным зарядом.

- Он не участвует в создании поля, которое с его помощью измеряется.

Предполагается, что этот заряд не искажает исследуемого поля, то есть он достаточно мал и не вызывает перераспределения зарядов, создающих поле.

Если на пробный точечный заряд поле действует силой, то напряженность
.

Единицы напряженности:

СИ:

СГСЭ:

В системе СИ выражение для поля точечного заряда :

.

В векторной форме:

Здесь – радиус-вектор, проведенный из зарядаq , создающего поле, в данную точку.

Т
аким образом,векторы напряженности электрического поля точечного заряда q во всех точках поля направлены радиально (рис.1.3)

- от заряда, если он положительный, «исток»

- и к заряду, если он отрицательный «сток»

Для графической интерпретации электрического поля вводят понятие силовой линии или линии напряженности . Это

    кривая , касательная в каждой точке к которой совпадает с вектором напряженности .

    Линия напряженности начинается на положительном заряде и заканчивается на отрицательном.

    Линии напряженности не пересекаются, так как в каждой точке поля вектор напряженности имеет лишь одно направление.

Закон сохранения заряда

Электрические заряды могут исчезать и возникать вновь. Однако всегда возникают или исчезают два элементарных заряда противоположных знаков. Например, электрон и позитрон (положительный электрон) при встрече аннигилируют, т.е. превращаются в нейтральные гамма-фотоны. При этом исчезают заряды -е и +е. В ходе процесса, называемого рождением пары, гамма-фотон, попадая в поле атомного ядра, превращается в пару частиц – электрон и позитрон, при этом возникают заряды -е и +е .

Таким образом, суммарный заряд электрически изолированной системы не может изменяться. Это утверждение носит название закона сохранения электрического заряда .

Отметим, что закон сохранения электрического заряда тесно связан с релятивисткой инвариантностью заряда. Действительно, если бы величина заряда зависела от его скорости, то, приведя в движение заряды одного какого-то знака, мы изменили бы суммарный заряд изолированной системы.

Заряженные тела взаимодействуют друг с другом, причем одноименные заряды отталкиваются, а разноименные притягиваются.

Точное математическое выражение закона этого взаимодействия в 1785 г. установил французский физик Ш.Кулон. С тех пор закон взаимодействия неподвижных электрических зарядов носит его имя.

Заряженное тело, размерами которого можно пренебречь, по сравнению с расстоянием между взаимодействующими телами может быть принято за точечный заряд. Кулон в результате своих опытов установил, что:

Сила взаимодействия в вакууме двух неподвижных точечных зарядов прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Индекс «» у силы показывает, что это сила взаимодействия зарядов в вакууме.

Установлено, что закон Кулона справедлив на расстояниях от до нескольких километров.

Чтобы поставить знак равенства, необходимо ввести некоторый коэффициент пропорциональности, величина которого зависит от выбора системы единиц:

Уже отмечалось, что в СИ заряд измеряется в Кл. В законе Кулона известна размерность левой части ‑ единица силы , известна размерность правой части ‑ , поэтому коэффициент k получается размерным и равным . Однако в СИ этот коэффициент пропорциональности принято записывать в несколько другом виде:

следовательно

где фарад (Ф ) – единица электрической емкости (см. п. 3.3).

Величину называют электрической постоянной. Это действительно фундаментальная постоянная, фигурирующая во многих уравнениях электродинамики.

Таким образом, закон Кулона в скалярной форме имеет вид:

Закон Кулона может быть выражен в векторной форме:



где ‑ радиус-вектор, соединяющий заряд q 2 с зарядом q 1 , ; ‑ сила, действующая на заряд q 1 со стороны заряда q 2 . На заряд q 2 со стороны заряда q 1 действует сила (рис.1.1)

Опыт показывает, что сила взаимодействия двух данных зарядов не изменяется, если вблизи них расположить ещё какие-либо другие заряды.