Правила оформления расчетно-графической работы. Правила оформления ргр

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

ОФОРМЛЕНИЕ ТЕКСТА

Расчетно-графическая работа оформляется в соответствии с ЕСКД, введенной с 01.07.1996 г., и выполняется на стандартной белой бумаге формата А4 на одной стороне одним из способов:

    рукописным – чертежным шрифтом по ГОСТ 2.304 с высотой букв и цифр не менее 2,5 мм. Цифры и буквы необходимо писать четко синей либо черной шариковой (гелевой) ручкой;

    с применением печатающих и графических устройств вывода ЭВМ, согласно требованиям ГОСТ 2.004.

Каждый лист РГР оформляется рамкой (слева – 20 мм, с трех остальных сторон – 5 мм), выполненной одним из выше рекомендованных способов.

Текст РГР необходимо располагать, соблюдая следующие требования:

    расстояние от рамки формы до границ текста в начале и в конце строк должно быть не менее 3 мм;

    расстояние от верхней или нижней строки текста до верхней или нижней рамки должно быть не менее 10 мм;

    абзацы в тексте начинают отступом, равным 5 ударам пишущей машинки (15–17 мм);

    расстояние между заголовками и текстом при машинном способе оформления текстового материала должно быть равно 3 или 4 интервалам, а при оформлении рукописным способом – 15 мм;

    расстояние между заголовками раздела и подраздела (при отсутствии текста) должно быть такое же, как и между строками текста – 2 интервала, а при оформлении рукописным способом – 8 мм;

    расстояние между текстом и последующим заголовком должно равняться 3–5 интервалам (15–30 мм).

Текст пояснительной записки на ЭВМ должен выполняться шрифтом Times New Roman размером 14 pt.

Индексы, присутствующие в обозначении символов, должны выполняться шрифтом, равным 10 pt.

Опечатки, описки и графические неточности, обнаруженные в процессе выполнения документа, допускается исправлять подчисткой или закрашиванием белой краской (корректором) и нанесением на том же месте исправленного текста синими или черными чернилами, рукописным способом. Их число может быть не более 5 % от количества информации, находящейся на листе.

РГР должна включать:

    титульный лист;

    задание на выполнение работы (составляется в соответствии с шифром);

    разделы, представляющие собой задачи в соответствии с заданием;

    список используемых литературных источников;

Титульный лист является первым листом документа – пояснительной записки. Он выполняется на листах формата А4 по ГОСТ 2.301, форма которого приведена в приложении А.

Задание на РГР составляется на листе формата А4 в соответствии с полученным шифром.

При оформлении РГР нельзя забывать, что титульный лист, задание и содержание входят в общее число ее листов. На титульном листе и на листах задания номера листов не проставляются. Нумерацию начинают проставлять с листа содержания. Конечное число листов РГР проставляют в графе 5 основной надписи, расположенной на первом листе содержания, выполненной по ГОСТ 2.104-68, при этом нумерация страниц записки должна быть сквозной (нумерация титульного листа и задания подразумевается).

В список литературы включаются все использованные источники в алфавитном порядке. В соответствии с ГОСТ 7.1-84 список содержит: номер источника (арабская цифра), полное его наименование и выходные данные.

Пояснительная записка должна быть сброшюрована.

Текст работы пишут от третьего лица в изъявительном наклонении либо неопределенной форме, например «цепи рассчитывают». В пояснительной записке РГР не допускается применять:

– сокращения слов, кроме установленных правилами орфографии, соответствующими государственными стандартами, а также в данном документе;

– сокращение обозначений единиц СИ, если они употребляются без цифр, за исключением единиц СИ в строках и столбцах таблиц, и в расшифровках буквенных обозначений, входящих в формулы и рисунки.

ОФОРМЛЕНИЕ РАСЧЕТНЫХ МАТЕРИАЛОВ

При расчете электрической схемы в формулах в качестве символов следует применять обозначения, установленные соответствующими государственными стандартами и Международной системой единиц (СИ), в том числе и размерности величин. При оформлении РГР необходимо подставлять в формулы числовые значения величин. Окончательный результат приводится с указанием размерности без промежуточных вычислений.

Расчеты, следующие один за другим и не разделенные текстом, разделяют точкой с запятой. Например:

Числовые значения величин в расчетах следует указывать со степенью точности до тысячных.

ОФОРМЛЕНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Текстовая часть расчетно-графической работы дополняется достаточными для пояснения схемами. Схемы располагаются вначале каждого нового расчета электрической схемы. Построение схем выполняется при помощи чертежных принадлежностей, согласно требованиям ГОСТ.

Схемы следует нумеровать арабскими цифрами сквозной нумерацией. Например, Рисунок 1 – Расчетная схема электрической цепи.

Схемы в тексте размещают таким образом, чтобы их можно было рассматривать, не поворачивая лист или поворачивая его по часовой стрелке.

Диаграммы, строятся на миллиметровой бумаге с использованием чертежных принадлежностей.

Значения переменных величин на диаграммах показываются в виде шкал в принятом для построения произвольном масштабе и отличаются делительными штрихами на осях или координатной сетке. При этом размерность указывается между последним и предпоследним значениями величины.

Масштабы по координатным осям графиков рационально выбирать так, чтобы изображаемые на них кривые достаточно заполняли поле графика.

Надписи и обозначения на схемах, диаграммах, титульных листах расчетно-графических работ выполняются чертежным шрифтом по ГОСТ 2.304-81.

Формы основных надписей разработаны на основе ГОСТ 2.104-68 и ГОСТ 21.103-78. Убраны только те графы, которые никогда не выполняются. Несколько изменены надписи отдельных граф.

Форма основной надписи, представленная на рисунке 1 дана форма надписи для первого листа пояснительной записки, а на рисунке 2 – для второго и последующих листов записки.

В графах основных надписей указывают:

    в графе 1 – наименование изделия либо документа. В основной надписи первого листа в графе 1 следует писать название работы. Например: РГР по дисциплине «Электротехника и основы электроники» .

    в графе 2 – обозначение документа. В основной надписи первого листа в графе 2 следует писать «МВ - 21 111 РГР № 1 ». В данном обозначении заложена следующая информация: МВ - 21 – учебная группа; 111 –шифр задания студента; РГР – вид выполненной работы (РГР – расчетно-графическая работа); № 1 – номер расчетно-графической работы;

    в графе 3 – условное обозначение стадии проектирования: У учебные работы (расчетно-графические).

    в графе 4 – порядковый номер листа;

    в графе 5 – общее количество листов (графу заполняют только на первом листе);

    в графе 6 – сокращенное наименование организации (университета и кафедры);

    в строках графы 7 указывают: выполнил, проверил;

    в строках графы 8 – фамилии лиц, подписавших документ;

    в строках графы 9 – подписи лиц, фамилии которых указаны в графе 8;

Рисунок 1 – Образец рамки на 40 мм.

Рисунок 2 – Образец рамки на 15 мм.

Рисунок 3 – Образец оформления титульного листа

Министерство образования Республики Беларусь

Учреждение образования

""БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ ТРАНСПОРТА""

Кафедра «Электротехника»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Электротехника и электроснабжение»

Выполнил Проверила

студент группы СП-21 ассистент

Иванов И.И. Гатальская И. А.

Транскрипт

1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ТЕОРЕТИЧЕСКИ Х ОСНОВ ЭЛЕКТРОТЕХНИ КИ Расчетно-графическая работа 1 Расчет линейной электрической цепи постоянного тока Выполнил: студент гр. Проверил: Уфа 2011

2 Вариант: Исходные данные: R1 = 20 Ом R2 = 50 Ом R3 = 60 Ом R4 = 40 Ом R5 = 70 Ом R6 = 20 Ом E4 = -100 В E5 = 250 В JК3 = -7 A Рис. 1 Исходная схема Задание: 1. Определить все токи методом контурных токов. 2. Определить все токи методом узловых напряжений, приняв потенциал 4-го узла равным нулю. 3. Произвести проверку по законам Кирхгофа. 4. Составить баланс мощностей. 5. Определить ток I1 методом эквивалентного генератора. 6. Начертить в масштабе потенциальную диаграмму для любого контура, включающего в себя две ЭДС. 2

3 1. РАСЧЕТ ЦЕПИ МЕТОДОМ КОНТУРНЫХ ТОКОВ Зададим произвольно направления токов в ветвях схемы (Рис. 2). Число ветвей схемы в 7 Рис. 2. Схема с произвольно выбранными направлениями токов Число ветвей схемы, содержащих источник тока вит 1 Число узлов у = 4 Составим линейно независимые уравнения по первому закону Кирхгофа, число которых равно числу узлов без единицы (у 1 = 3): { (1.1) По второму закону Кирхгофа составляем уравнения, число которых равно () { (1.2) 3

4 Зададим произвольно направления контурных токов: Рис. 3. Схема с произвольно выбранными направлениями контурных токов Для каждого контура составим уравнения по второму закону Кирхгофа: I: I11 R1 R2 R3 I22R3 I33R2 E11 II: I22 R3 R4 R5 I11R3 I33R5 E III: I33 R2 R5 R6 I11R2 I22R5 E33 E J R 11 k3 2 E E E E J R 5 k 3 2 Выразим искомые токи через контурные токи: (1.4) { Система уравнений выглядит следующим образом: { (1.5) Эту систему уравнений можно решить, представив ее в виде матрицы: (1.6) Решая эту матрицу, получаем следующие контурные токи: I11 1,065 A 4

5 I22 I33 I44-2,2924 A -1,4801 A 7 A Находим искомые токи: I1 1,065 A; I2 4,4549 A; I3-3,3574 A; I4-2,2924 A; I5 0,8123 A; I6-1,4801 A 5

6 2. РАСЧЕТ ЦЕПИ МЕТОДОМ УЗЛОВЫХ ПОТЕНЦИАЛОВ Рис. 4. Схема с обозначенными потенциалами в узлах Выберем в качестве базисного узел 4 и приравняем к нулю его потенциал φ4 = 0 Выразим искомые токи через потенциалыφ 1,φ 2,φ 3,φ 4: I i U i E R Получим систему уравнений: i i I1 4 1 G1 I2 4 3 G2 I3 3 1 G3 I E G I E G I6 2 4 G Т.к. 4 0, то получим следующую систему уравнений: I1 1 G1 I2 3 G2 I3 3 1 G3 I E G I E G I6 2 G Составим систему уравнений для нахождения потенциалов: G G G J G G G J G G G J

7 Определим взаимную и собственную проводимости: G11 = G1 + G3 + G4 = 1/ / / 40 = 0,0917 См G22 = G4 + G5 + G6 = 1/ / / 20 = 0,0893 См G33 = G2 + G3 + G5 = 1/ / / 70 = 0,051 См G12 = G21 = G4 = 1/ 40 = 0,025 См G13 = G31 = G3 = 1/ 60 = 0,0167 См G23 = G32 = G5 = 1/ 70 = 0,0143 См Найдем узловые токи: J11 J22 J33 E4G4 = 100/40 = 2,5 А E4G4 + E5G5 = -100/ /70 = 1,0714 А E5G5 + IK3= 250/70-7 = -10,5714 А Систему уравнений можно представить в виде матрицы: 0,0917-0,025-0,0167 2,5-0,025 0,0893-0,0143 1,0714-0,0167-0,0143 0,051-10,5714 Решением матрицы будут искомые значения потенциалов: φ1 = -21,3477 В φ2 = -29,621 В φ3 = -222,5782 В φ4 = 0 В Находим токи, подставляя значения потенциалов в систему уравнений (2.2): I1 = (φ1) G1 = (21,3477)/20 = 1,0674 A I2 = (φ3) G2 = (222,5782)/50 = 4,4516 A I3 = (φ3 φ1) G3 = (-222,5782 (-21,3477))/60 = -3,3538 A I4 = (φ1 φ2 + E 4) G4 = (-21,3477 (-29,621) -100)/40 = -2,2932 A I5 = (φ3 φ2 + E 5) G5 = (-222,5782 (-29,621) + 250)/70 = 0,8149 A I6= (φ2)G6 = (-29,621)/20 = -1,4811 A Сравним значения полученных токов, найденных методом контурных токов (МКТ) и методом узловых потенциалов (МУП): Метод Ток, A I1 I2 I3 I4 I5 I6 МКТ 1,065 4,4549-3,3574-2,2924 0,8123-1,4801 МУП 1,0674 4,4516-3,3538-2,2932 0,8149-1,4811 7

8 3. БАЛАНС МОЩНОСТЕЙ Составим баланс мощностей в исходной схеме с источником тока, вычислив суммарную мощность источников и суммарную мощность приемников. I R I R I R I R I R I R = E 4I4 + E 5I 5 + Jk3U Суммарная мощность приемников: n P пр =I1 R1 I2R 2 I3R3 I4R 4 I5R5 I6R = (1,065)² 20 + (4,4549)² 50 + (-3,3574)² i1 + (-2,2924)² 40 + (0,8123)² 70 + (-1,4801)² 20 = 1991,525 Вт Суммарная мощность источников: n P ист = E 4I4 + E 5I 5 + Jk3U34 = E 4I4 + E 5I 5 + Jk3(E2 I2R2) = i1 = (0 4 50) = 1991,53 Bт Допускается расхождения баланса активных мощностей Pист Pпр ΔP= 100% 0, % P ист Баланс мощностей сходится, значит, расчет токов произведен верно. 8

9 4. РАСЧЕТ ТОКА I 1 МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА 4.1. Расчет напряжения холостого хода Uхх Разомкнем ветвь ab и определим напряжение Uхх на зажимах разомкнутой ветви ab. Рис. 5. Схема с разомкнутой веткой ab Uхх можно представить в следующем виде: Uхх = φ4 φ1 Принимая φ 4 = 0 получим: Uхх = φ1 Найдем неизвестное значение φ1 методом узловых потенциалов. Составим систему уравнений для нахождения потенциалов: G G G J G G G J G G G J Определим взаимную и собственную проводимости: G11 = G3 + G4 = 1/ / 40 = 0,0417 См G22 = G4 + G5 + G6 = 1/ / / 20 = 0,0893 См G33 = G2 + G3 + G5 = 1/ / / 70 = 0,051 См G12 = G21 = G4 = 1/ 40 = 0,025 См G13 = G31 = G3 = 1/ 60 = 0,0167 См G23 = G32 = G5 = 1/ 70 = 0,0143 См 9

10 Найдем узловые токи: J11 J22 J33 E4G4 = 100/40 = 2,5 А E4G4 + E5G5 = -100/ /70 = 1,0714 А E5G5 + IK3= 250/70-7 = -10,5714 А Систему уравнений можно представить в виде матрицы: 0,0417-0,025-0,0167 2,5-0,025 0,0893-0,0143 1,0714-0,0167-0,0143 0,051-10,5714 Решением матрицы будут искомое значение потенциала: φ1 = -62,557 В Определим напряжение Uхх: Uхх = φ1 = 62,557 В 10

11 4.2. Расчет входного сопротивления Rвх Определим входное сопротивление Rэкв всей схемы по отношению к зажимам ab при закороченных источниках ЭДС и разомкнутой ветви с источником тока: Заменим данную схему, изменив соединение резисторов треугольник R3, R4,R5 на эквивалентное соединение звездой Ra, Rb, Rc: Ra a R4 Rb R5 a Rc Rb a Ra R3 Rc R6 Rэкв R2 R6 b R2 b b Рис. 6. Преобразования схемы для определения Rэкв Ra = R3 R4/(R3 + R4 + R5) = 60 40/() = 14,1176 Ом Rb = R4 R5/(R3 + R4 + R5) = 40 70/() = 16,4706 Ом Rc = R3 R5/(R3 + R4 + R5) = 60 70/() = 24,7059 Ом Rd = Rb + R6 = 16, = 36,4706 Ом Re = Rс + R2 = 24, = 74,7059 Ом В итоге получим: Rэкв = Ra + Rd Re/(Rd + Re) = 14,7059/(36,7059) = 38,6243 Ом Находим искомый ток I1 закону Ома: I1 = Uхх /(R1 + Rэкв) I1 = 62,557 /(,6243) = 1,0671 A 11

12 5. ПОТЕНЦИАЛЬНАЯ ДИАГРАММА Рис. 7. Схема с обозначенными потенциалами За нулевой потенциал примем потенциал узла 4: φ1 = 0 Рассчитаем значение потенциала во всех точках контура: φ2 = φ1 I1R1 = 1, = -21,3 B φ3 = φ2 I4R4 = -21,3-2, = 70,396 В φ4 = φ3 + E4 = 70, = -29,604 В φ5 = φ4 E5 = -29, = -279,604 В φ6 = φ5 + I5R5 = -279, = -222,745 В φ1 = φ6 + I2R2 = -222, = 0 В По полученным данным построим потенциальную диаграмму: 12


Дано: 3 4 5 6 7 8 50 B 0 B 45 B 30 B 40 B 5 0 J 4 A I A B B R R R 3 8 8 Ом 6 Ом 3 Ом R4 4 R5 7 R6 4 Ом Ом Ом R7 Ом R 4 Ом Решение:. Запишем по законам Кирхгофа систему уравнений для определения неизвестных

Задача 1 Для заданной схемы необходимо: 1) составить на основании законов Кирхгофа систему уравнений для расчета токов во всех ветвях схемы; 2) определить токи во всех ветвях методом контурных токов; 3)

Лекция профессора Полевского В.И. () Расчет разветвленных линейных электрических цепей постоянного тока с несколькими источниками энергии. Цель лекции: ознакомиться с основными методами расчета разветвленных

Задача () Для электрической схемы, изображенной на рис. по заданным сопротивлениям и ЭДС выполнить следующее:) составить систему уравнений, необходимых для определения токов по первому и второму законам

Министерство образования Российской Федерации Московский государственный горный университет Кафедра электротехники РАСЧЕТ ЦЕПЕЙ ПОСТОЯННОГО ТОКА Методические указания к самостоятельной работе по ТОЭ для

Расчет электрических цепей постоянного тока методом эквивалентных преобразований Основными законами, определяющими электрическое состояние любой электрической цепи, являются законы Кирхгофа. На основе

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Экономико-энергетический институт» ПОЛИТОВ И.В. СБОРНИК практических работ по дисциплине ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта ГОУ ВПО «Дальневосточный государственный университет путей сообщения» Кафедра «Телекоммуникации» АВСтафеев

Московский государственный технический университет имени Н.Э. Баумана В.И. Волченсков, Г.Ф. Дробышев РАСЧЕТ ЛИНЕЙНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА Издательство МГТУ им. Н.Э. Баумана Московский государственный

Кировское областное государственное профессиональное образовательное бюджетное учреждение «Кировский авиационный техникум» Рассмотрено цикловой комиссией электротехнических специальностей Протокол 4 от

Практичні заняття з дисципліни «Електротехніка, електроніка та мікропроцесорна техніка» Практическое занятие 1 Расчет сложных электрических цепей постоянного тока с одним источником энергии Цель занятия

Лекция профессора Полевского ВИ () Основные законы электрических цепей Эквивалентные преобразования электрических схем Цель лекции: ознакомиться с основными законами и эквивалентными преобразованиями в

1. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА 1.1. Электрическая цепь, ее элементы и параметры Основные электротехнические устройства по своему назначению подразделяются на устройства, генерирующие электрическую

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Южно-Уральский государственный университет Кафедра Теоретические основы электротехники. () В. Н. Непопалов Расчет линейных электрических цепей постоянного

1.6. Метод наложения. Теоретические сведения. При расчете этим методом используется принцип наложения (или принцип суперпозиции), который справедлив для всех линейных цепей: ток в любой ветви может быть

Работа по теме «Сложные цепи» Определить токи в ветвях и режимы работы источников в схеме, где E, E - ЭДС источника энергии; 0, 0 - их внутреннее сопротивление;, 4, 5 - сопротивление резисторов. Данные

Методы расчета сложных линейных электрических цепей Основа: возможность составления и решения систем линейных алгебраических уравнений - составляемых либо для цепи постоянного тока, либо после символизации

1.5 Метод эквивалентного генератора. Теоретические сведения. Метод позволяет вычислить ток только в одной ветви. Поэтому расчет повторяется столько раз, сколько ветвей с неизвестными токами содержит схема.

1.1. Законы Кирхгофа. Теоретические сведения. Топология цепи ее строение. Разобраться со строением цепи можно, зная определения ее элементов. Ветвь - участок цепи, содержащий один или несколько последовательно

БИЛЕТ 1 Определите токи в ветвях схемы и режимы работы обоих источников питания. Составьте баланс мощностей. Сопротивления заданы в (Ом). Определите параметры двухполюсника по показаниями приборов. ра

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БАРАНОВИЧСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» РЕШЕНИЕ ЗАДАЧ ПО РАСЧЁТУ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ЦЕПЕЙ Практическое пособие для аудиторной

Федеральное агентство по образованию Уральский государственный технический университет УПИ имени первого Президента России Б.Н. Ельцина В.В. Муханов, А.Г. Бабенко РАСЧЕТ СЛОЖНЫХ ЦЕПЕЙ Учебное электронное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА»

ПГУПС Лабораторная работа 6 «Исследование электрической цепи постоянного тока методом эквивалентного источника» Выполнил Круглов В.А. Проверил Костроминов А.А. Санкт-Петербург 2009 Оглавление Оглавление...

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА Задание 1. Для электрической схемы, соответствующей номеру варианта и изображенной на рис. 1.1 1.20, выполнить следующее: 1. Упростить схему, заменив последовательно

Расчетное задание Анализ резистивных цепей постоянного тока Для схемы, соответствующей номеру варианта, выполнить:. Записать уравнения по законам Кирхгофа. Решив полученную систему уравнений, определить

Пример Расчет разветвленной цепи постоянного тока. Расчет производится тремя методами: методом последовательного применения законов Кирхгоффа, методом контурных токов и методом узловых потенциалов. По

ЛАБОРАТОРНАЯ РАБОТА N 5 ИЗУЧЕНИЕ ЗАКОНОВ ПОСТОЯННОГО ТОКА ЦЕЛЬ РАБОТЫ 1. Получение практических навыков при работе с простейшими электроизмерительными приборами. 2. Изучение законов протекания электрического

ЛЕКЦИЯ 6. Методы анализа сложных линейных цепей. Существуют универсальные методы, позволяющие автоматически описывать связь между током и напряжением на различных участках цепи. Эти методы позволяют сократить

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Исследование электрической

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный авиационный технический

Практическая работа 5 Тема: Расчёт электрических цепей с использованием законов Ома и Кирхгофа. Цель: научиться рассчитывать электрические цепи постоянного тока, используя законы Ома и Кирхгофа. Ход работы

Расчетно-граическая работа РАСЧЕТ ТРЕХФАЗНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ.. Задание. По заданному номеру варианта изобразить цепь, подлежащую расчету, выписать значения параметров элементов цепи.. Рассчитать азное

14 Метод узловых потенциалов Теоретические сведения Метод расчета, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов Этот метод наиболее рационально применять

Глава 1. Основные законы электрической цепи 1.1 Параметры электрической цепи Электрической цепью называют совокупность тел и сред, образующих замкнутые пути для протекания электрического тока. Обычно физические

4 Лекция АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ План Задача анализа электрических цепей Законы Кирхгофа Примеры анализа резистивных цепей 3 Эквивалентные преобразования участка цепи 4 Выводы Задача анализа электрических

Министерство образования РФ Восточно-Сибирский государственный технологический университет Кафедра Электротехника ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ОСНОВЫ ТЕОРИИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ Задание на контрольную

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Теоретические основы электротехники» Р.Я. Сулейманов Т.А. Никитина Е.П. Никитина Расчетно-графические

Министерство образования и науки Российской Федерации РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М. ГУБКИНА Кафедра теоретической электротехники и электрификации нефтяной и газовой промышленности

ТОЭ Часть. Лк. 3. Тема: методы контурных токов и узловых потенциалов МЕТОДЫ РАСЧЕТА УСТАНОВИВШЕГОСЯ РЕЖИМА ЛИНЕЙНЫХ ЦЕПЕЙ Методы расчета доказываются при помощи законов Ома и Кирхгофа Методы расчета рассмотрим

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Вопросы и задачи к экзамену по дисциплине «Электротехника и электроника» Свойства и методы расчета линейных электрических цепей постоянного тока Теоретические вопросы 1. Понятие электрической цепи, электрической

ФОРМА ТИТУЛЬНОГО ЛИСТА Министерство образования и науки РФ Новосибирский государственный технический университет Кафедра ТОЭ ОТЧЕТ по лабораторной работе (полное наименование работы) Работа выполнена (дата

Часть 1. Линейные цепи постоянного тока. Расчёт электрической цепи постоянного тока методом свертывания (метод эквивалентной замены) 1. Теоретические вопросы 1.1.1 Дайте определения и объясните различия:

Практические занятия по ТЭЦ. Список задач. занятие. Расчёт эквивалентных сопротивлений и других соотношений.. Для цепи a c d f найти эквивалентные сопротивления между зажимами a и, c и d, d и f, если =

РАСЧЕТ ТРЕХФАЗНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ Выбор варианта и параметров элементов цепи 1. По заданному номеру варианта изобразим цепь, подлежащую расчету, и выпишем значения параметров элементов. 2. В качестве

Областное государственное бюджетное образовательное учреждение среднего профессионального образования «Иркутский авиационный техникум» УТВЕРЖДАЮ Директор ОГБОУ СПО «ИАТ» В.Г. Семенов Комплект методических

В М Питолин, Т В Попова, П Ю Беляков, С Ю Кобзистый ОСНОВЫ ЭЛЕКТРОТЕХНИКИ: ЭЛЕМЕНТЫ ТЕОРИИ С ПРИМЕРАМИ РЕШЕНИЯ ЗАДАЧ Учебное пособие Воронеж 006 МЕЖДУНАРОДНЫЙ ИНСТИТУТ КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ ВОРОНЕЖСКИЙ

4 Лекция. АНАЛИЗ РЕЗИСТИВНЫХ ЦЕПЕЙ План. Задача анализа электрических цепей. Законы Кирхгофа.. Примеры анализа резистивных цепей. 3. Эквивалентные преобразования участка цепи. 4. Заключение. Задача анализа

Поволжский Государственный университет телекоммуникаций и информатики Кафедра Теоретических основ радиотехники и связи Методические указания к контрольной работе по части курса «Основы теории цепей» для

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Электрические машины» А. П. Сухогузов Линейные электрические цепи Часть Екатеринбург 0 Федеральное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» БАНК АТТЕСТАЦИОННЫХ

РГР Расчет электрической цепи постоянного тока. Основные законы цепей постоянного тока Постоянный ток - электрический ток, не изменяющийся во времени ни по силе, ни по направлению. Постоянный ток возникает

Ивановский государственный политехнический университет (И В Г П У) Т е к с т и л ь н ы й и н с т и т у т К а федра автоматики и радиоэлектроники Методические указания к расчетно-графическим заданиям по

Материалы для самостоятельной подготовки по дисциплине «Теория электрических цепей» для студентов специальностей: -6 4 з «Промышленная электроника» (часть), -9 с «Моделирование и компьютерное проектирование

РГР Расчет линейной цепи синусоидального тока В исходной цепи с ЭДС et () Esin(t) рассчитать токи ветвей и составить баланс мощностей (активных и реактивных). Коэффициент связи k 0,9. Взаимная индуктивность

Итоговый тест, ЭЛЕКТРОРАДИОТЕХНИКА Ч., ОДО/ОЗО (46). (60c.) Укажите правильную формулу закона Ома для участка цепи I) r I) r I) I 4). (60c.) Укажите правильную формулировку закона Ома для участка цепи

И.А. Реброва РАСЧЁТ УСТАНОВИВШИХСЯ РЕЖИМОВ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ Учебно-методическое пособие Омск 03 Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение

Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирская государственная автомобильно-дорожная академия (СибАДИ)»

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»

Глава 3 Переменный ток Теоретические сведения Большая часть электрической энергии вырабатывается в виде ЭДС, изменяющейся во времени по закону гармонической (синусоидальной) функции Источниками гармонической

ЛАБОРАТОРНЫЕ РАБОТЫ ПО ТЕОРЕТИЧЕСКИМ ОСНОВАМ ЭЛЕКТРОТЕХНИКИ Оглавление: ПОРЯДОК ВЫПОЛНЕНИЯ И ОФОРМЛЕНИЯ ЛАБОРАТОРНЫХ РАБОТ... 2 ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ ДЛЯ ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ... 2 РАБОТА 1. ЗАКОНЫ

Примеры возможных схем решения задач семестрового задания Задание. Методы расчета линейных электрических цепей. Условие задачи. Определить ток протекающий в диагонали разбалансированного моста Уитстона

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ ПЕРЕЧЕНЬ И СОДЕРЖАНИЕ РАЗДЕЛОВ (МОДУЛЕЙ) ДИСЦИПЛИНЫ п/п Модуль дисциплины Лекции, ч\заочн 1 Введение 0.25 2 Линейные электрические цепи постоянного тока 0.5 3 Линейные электрические

§1. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

1п. Общий вид нелинейного уравнения

Нелинейные уравнения могут быть двух видов:

1. Алгебраические
a n x n + a n-1 x n-1 +… + a 0 = 0

2. Трансцендентные- это уравнения в которых х является аргументом тригонометрической, логарифмической или показательной функции.

Значение х 0 при котором существует равенство f(x 0)=0 называется корнем уравнения.

В общем случае для произвольной F(x) не существует аналитических формул определения корней уравнения. Поэтому большое значение имеют методы, которые позволяют определить значение корня с заданной точностью. Процесс отыскания корней делиться на два этапа:

1. Отделение корней, т.е. определение отрезка содержащего один корень.

2. Уточнение корня с заданной точностью.

Для первого этапа нет формальных методов, отрезки определяются или табуляцией или исходя из физического смысла или аналитическими методами.

Второй этап, уточнение корня выполняется различными итерационными методами, суть которых в том, что строится числовая последовательность x i сходящихся к корню x 0

Выходом из итерационного процесса являются условия:

1. │f(x n)│≤ε

2. │x n -x n-1 │≤ε

рассмотрим наиболее употребляемые на практике методы: дихотомии, итерации и касательных.

2 п. Метод половинного деления.

Дана монотонная, непрерывная функция f(x), которая содержит корень на отрезке , где b>a. Определить корень с точностью ε, если известно, что f(a)*f(b)<0

Суть метода

Данный отрезок делится пополам, т.е. определяется x 0 =(a+b)/2, получается два отрезка и , далее выполняется проверка знака на концах, полученных отрезков для отрезка, имеющего условия f(a)*f(x 0)≤0 или f(x 0)*f(b)≤0 снова проводится деление пополам координатой х, снова выделение нового отрезка и так продолжается процесс до тех пор пока │x n -x n-1 │≤ε

Приведем ГСА для данного метода


3п. Метод итерации.

Дана непрерывная функция f(x), которая содержит единственный корень на отрезке , где b>a. Определить корень с точностью ε.

Суть метода

Дано f(x)=0 (1)

Заменим уравнение (1) равносильным уравнением x=φ(x) (2). Выберем грубое, приближенное значение x 0 , принадлежащее, подставим его в правую часть уравнения (2), получим:

Проделаем данный процесс n раз получим x n =φ(x n-1)

Если эта последовательность является сходящейся т.е. существует предел

x * =lim x n , то данный алгоритм позволяет определить искомый корень.

Выражение (5) запишем как x * = φ(x *) (6)
Выражение (6) является решением выражения (2), теперь необходимо рассмотреть в каких случаях последовательность х 1 …х n является сходящейся.
Условием сходимости является если во всех токах x принадлежит выполняется условие:


4 п. Метод касательных (Ньютона).

Дана непрерывная функция f(x), которая содержит единственный корень на отрезке , где b>a при чем определены непрерывны и сохраняют знак f`(x) f``(x). Определить корень с точностью ε.

Суть метода

1. Выбираем грубое приближение корня х 0 (либо точку a, либо b)

2. Наити значение функции точке х 0 и провести касательную до пересечения с осью абсцисс, получим значение х 1

3.


Повторим процесс n раз Если процесс сходящийся то x n можно принять за искомое значение корня
Условиями сходимости являются:

│f(x n)│≤ε

│x n -x n-1 │≤ε

Приведем ГСА метода касательных:

5п. Задание для РГР

Вычислить корень уравнения


На отрезке с точностью ε=10 -4 методами половинного деления, итерации, касательных.

6 п. Сравнение методов

Эффективность численных методов определяется их универсальностью, простотой вычислительного процесса, скоростью сходимости.

Наиболее универсальным является метод половинного деления, он гарантирует определение корня с заданной точностью для любой функции f(x), которая меняет знак на . Метод итерации и метод Ньютона предъявляют к функциям более жесткие требования, но они обладают высокой скоростью сходимости.

Метод итерации имеет очень простой алгоритм вычисления, он применим для пологих функций.
Метод касательных применим для функций с большой крутизной, а его недостатком является определение производной на каждом шаге.

ГСА головной программы, методы оформлены подпрограммами.

Программа по методам половинного деления, итерации и метода Ньютона.

a = 2: b = 3: E = .0001

DEF FNZ (l) = 3 * SIN(SQR(l)) + .35 * l - 3.8

F1 = FNZ(a): F2 = FNZ(b)

IF F1 * F2 > 0 THEN PRINT "УТОЧНИТЬ КОРНИ": END

IF ABS((-3 * COS(SQR(x))) / (.7 * SQR(x))) > 1 THEN PRINT "НЕ СХОДИТСЯ"

DEF FNF (K) = -(3 * SIN(SQR(x)) - 3.8) / .35

DEF FND (N) = (3 * COS(SQR(N)) / (2 * SQR(N))) + .35 _
IF F * (-4.285 * (-SQR(x0) * SIN(SQR(x)) - COS(SQR(x))) / (2 * x * SQR(x))) < then print “не сходится”:end

"=========Метод половинного деления========

1 x = (a + b) / 2: T = T + 1

IF ABS(F3) < E THEN 5

IF F1 * F3 < 0 THEN b = x ELSE a = x

IF ABS(b - a) > E THEN 1 ‑

5 PRINT "X="; x, "T="; T

"=========Метод итерации==========

12 X2 = FNF(x0): S = S + 1

IF ABS(X2 - x0) > E THEN x0 = X2: GOTO 12

PRINT "X="; X2, "S="; S

"========Метод касательных=======

23 D = D + 1
F = FNZ(x0): F1 = FND(x0)

X3 = x0 - F / F1

IF ABS(X3 - x0) < E THEN 100

IF ABS(F) > E THEN x0 = X3: GOTO 23

100 PRINT "X="; X3, "D="; D

Ответ
x= 2,29834 T=11
x=2,29566 S=2
x=2,29754 D=2
где T,S,D-число итерации для метода половинного деления, итерации, касательных соответственно.

Студенты-технари, начиная с первого курса, получают от преподавателей сложное и важное задание на расчетно-графическую работу. Выполнение ргр требует определенных знаний и навыков, внимательности и усидчивости, а также достаточного количества времени, которого у современного студента не так уж и много.

Расчетно-графическая работа

Если невыполнение обычной контрольной работы преподаватель может простить студенту, то отсутствие решения ргр может негативно отразиться на успеваемости и существенно испортить впечатление об учащемся. Именно поэтому, выполнение расчетно-графической работы является обязательным и очень важным абсолютно для каждого. Кто-то кропотливо, проводя ночи с учебниками и тетрадями, выполняет все сам, – верно или нет, – узнает уже по факту. Кто-то обращается к студентам старших курсов за помощью, что, кстати, тоже рискованно, ведь нет никакой гарантии, что решение расчетно-графической работы предоставят правильное, без каких-либо недочетов. А кто-то выбирает более безопасный и максимально выгодный путь решения данного вопроса – заказывает работу у профессионалов.

Заказать ргр

Сегодня в Сети можно увидеть массу объявлений типа «ргр недорого» или «термех быстро и качественно», но где гарантия, что это не просто слова? Переходя на тот или иной сайт необходимо отправлять коды подтверждения, что сегодня очень рискованно. Некоторые авторы и агентства требуют 100% предоплаты, а в результате вы получаете «кота в мешке» и минимум гарантий, что работу исправят в кротчайшие сроки при возникновении претензий преподавателя.

Безопасным и надежным помощником современных студентов выступает сайт «ВсеСдал!». Доказательством тому служат тысячи заказов ежемесячно по различным предметам – от истории Древнего Египта до технической механики. Исполнители, зарегистрированные на сайте, проходят жесткий отбор, что позволяет оградить вас от недобросовестных и некомпетентных авторов.

Если вам нужна курсовая по экономике, эссе по истории или чертеж по геометрии – вы смело можете разместить заказ на сайте. Всего несколько часов и исполнитель, который выполнит вашу работу в срок, найдется.

Цены на сайте в 2-3 раза меньше, чем на других ресурсах. Обусловлено это тем, что вы напрямую общаетесь с автором, не переплачивая менеджерам, которые работают в агентствах. Общение напрямую дает еще ряд преимуществ:
Не возникает недопонимание по поводу задания – вы сами детально рассказываете, что и как должно выглядеть.
Если у исполнителя возникают вопросы или у вас дополнительные требования, времени на это уходит как минимум в 2-3 раза меньше, ведь общение через третьих лиц исключается.
Если вам требуется консультация по вопросам, касающихся работы, непосредственно тот, кто делал для вас задание, проконсультирует в кротчайшие сроки в режиме онлайн.
И, наконец, если работа автора вас полностью устроила, вы можете и дальше продолжать с ним выгодное сотрудничество – как постоянный клиент можете договориться о скидках на следующие заказы.

На каждый вид работы предусмотрен гарантийный срок, только по истечении которого исполнитель получает денежные средства. Если по какой-то причине автор не справится с работой, что бывает достаточно редко, 100% оплаты возвращаются на ваш счет.

С биржей готовых работ «ВсеСдал!» учеба больше не в тягость, а хвосты и неуды останутся в прошлом!

ЗАДАНИЯ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ

Прежде чем приступить к выполнению задания, следует изучить соответствующий теоретический материал по учебнику или конспекту лекций и подробно разобрать приведенные там примеры; разобрать задачи, рассмотренные на практических занятиях.

Приступая к решению задания, надо разобраться в условии задачи и рисунке.

Перед решением каждой задачи надо выписать полностью ее условие с числовыми данными, составить аккуратный эскиз в масштабе и указать на нем в числах все величины, необходимые для расчета.

Решение должно сопровождаться краткими, последовательными и грамотными без сокращения слов объяснениями и чертежами, на которых все входящие в расчет величины должны быть показаны в числах. Надо избегать многословных пояснений и пересказа учебника: студент должен знать, что язык техники - формула и чертеж. При пользовании формулами или данными, отсутствующими в учебнике, необходимо кратко и точно указывать источник (автор, название, издание, страница, номер формулы).

Не следует вычислять большое число значащих цифр, вычисления должны соответствовать необходимой точности. Нет необходимости длину деревянного бруса в стропилах вычислять с точностью до миллиметра, но было бы ошибкой округлять до целых миллиметров диаметр вала, на который будет насажен шариковый подшипник.

Чертежи, схемы следует выполнять при помощи чертежных принадлежностей.

Все параметры, необходимые для расчета: векторы, оси координат, углы, размеры должны быть изображены на рисунке.

Чертеж должен быть аккуратным, его размеры должны позволить ясно показать все силы или векторы скорости и ускорения и др.; показывать все эти векторы и координатные оси на чертеже, а также указывать единицы получае­мых величин нужно обязательно. Решение задач необходимо сопровождать краткими пояснениями (какие формулы или теоремы применяются, как полу­чаются те или иные результаты и т.д.) и подробно излагать весь ход расче­тов. На каждой странице следует оставлять поля для замечаний рецензента.

Работы выполняются на писчей бумаге формата А4 , чернилами (не красными), четким почерком, с полями.

В возвращенной расчетно-графической работе студент должен исправить все отмеченные ошибки и выполнить все данные ему указания. В случае требования рецензента следует в кратчайший срок послать ему выполненные на отдельных листах исправления, которые должны быть вложены в соответствующие места рецензированной работы. Отдельно от работы исправления не рассматриваются.

На экзамен необходимо представить зачтенные по разделам курса кон­трольные задания, в которых все отмеченные рецензентом погрешности долж­ны быть исправлены.

При чтении текста каждой задачи учесть следующее. Большинство ри­сунков дано без соблюдения масштабов. На рисунках к задачам все линии, па­раллельные строкам, считаются горизонтальными, а перпендикулярные стро­кам - вертикальными, и это в тексте задач специально не оговаривается. Также считается, что все нити (веревки, тросы) являются нерастяжимыми и невесо­мыми; нити, перекинутые через блок, по блоку не скользят; катки и колеса (для задач по кинематике и динамике) катятся по плоскостям без скольжения. Все связи, если не сделаны уточнения, считаются идеальными.

Когда тела на рисунке пронумерованы, то в тексте задач и в таблице P 1 , t 1 , r 1 и т.д. означают вес или размеры тела 1; P 2 , t 2 , r 2 - тела 2 и т.д. Анало­гично в кинематике и динамике V B , W B означают скорость и ускорение точки В ; V c , W c - точки С; 𝜔 1 , 𝜀 1 - угловую скорость и угловое ускорение тела 1; 𝜔 2 , 𝜀 2 - тела 2 и т.д. Для каждой задачи подобные обозначения могут тоже спе­циально не оговариваться.

Следует также иметь в виду, что некоторые из заданных в условиях зада­чи величин (размеров) при решении каких-то вариантов могут не понадобиться, они нужны для решения других вариантов задачи.

Выбор варианта

Из тридцати схем, предлагаемого задания, студент должен выбрать только одну, номер которой соответствует порядковому номеру его фамилии в журнале преподавателя на начало семестра.

Задание, выполненное не по своему варианту, к защите не принимается.

Защита расчетно-графических работ производится в соответствии с графиком учебного процесса.

При защите задания студент должен дать объяснение по его содержанию, уметь решать типовые задачи и давать ответы по теории соответствующего раздела курса.

Все задачи взяты из следующего источника: Кирсанов М.Н. Решебник . Теоретическая механика /П од ред. А.И.Кириллова . – М.:Физматлит , 2008. -384 с.

СТАТИКА

ПЛОСКАЯ СИСТЕМА СИЛ

Задача 1. ПРОСТАЯ СТЕРЖНЕВАЯ СИСТЕМА

Определить усилия во всех стержнях данной стержневой системы при воздействии на нее силы P .

Данные и схемы брать из таблицы 1 согласно номеру группы и вашему варианту.

Таблица 1

Задача 2. РАВНОВЕСИЕ ЦЕПИ ИЗ 3 ЗВЕНЬЕВ

Найти угол α в положении равновесия цепи и усилия в стержнях.

Данные и схемы брать из таблицы 2 согласно номеру группы и вашему варианту.

Таблица 2

Задача 3. ТЕОРЕМА О ТРЕХ СИЛАХ

Тело находится в равновесии под действием трех сил, одна из которых известный вес тела G P , другая - реакция опоры в точке B (гладкая опора или опорный стержень) с известным направлением, а третья – реакция неподвижного шарнира А . Используя теорему о трех силах, найти неизвестные реакции опор (в кН). Размеры указаны в см .

Данные и схемы брать из таблицы 3 согласно номеру группы и вашему варианту.

Таблица 3

Задача 4. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ТОЧКИ

Найти момент силы F относительно начала координат.

Данные и схемы брать из таблицы 4 согласно номеру группы и вашему варианту.

Таблица 4

Задача 5. ФЕРМА. ПРЯМОУГОЛЬНАЯ РЕШЕТКА

Определить опорные реакции и усилия в стержнях 1-5 данной фермы с прямоугольной решеткой привоздействии на нее сил P , Q , F .

Данные и схемы брать из таблицы 5 согласно номеру группы и вашему варианту.

Таблица 5

Задача 6. ФЕРМА. ТРЕУГОЛЬНАЯ РЕШЕТКА

Определить опорные реакции и усилия во всех стержнях данной фермы с треугольной решеткой привоздействии на нее сил P , Q , F .

Данные и схемы брать из таблицы 6 согласно номеру группы и вашему варианту.

Таблица 6

Задача 7. ФЕРМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

К плоской ферме приложены две одинаковые силы P . Найти усилия в стержнях 1 и 2 (выделены утолщением). Размеры даны в метрах.

Данные и схемы брать из таблицы 7 согласно номеру группы и вашему варианту.

Таблица 7

Задача 8. РАВНОВЕСИЕ ПРОСТОЙ РАМЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Определить реакции опор рамы; cos α =0,8.

Данные и схемы брать из таблицы 8 согласно номеру группы и вашему варианту.

Таблица 8

Задача 9. РАВНОВЕСИЕ ТЯЖЕЛОЙ РАМЫ

Тяжелая однородная рама расположена в вертикальной плоскости и опирается на неподвижный шарнир А и наклонный невесомый стержень Н . К раме приложены горизонтальная сила Р , наклонная сила Q и момент М . Учитывая погонный вес рамы ρ , найти реакции опор.

Данные и схемы брать из таблицы 9 согласно номеру группы и вашему варианту.

Таблица 9

Задача 10. РАСЧЕТ ПРОСТОЙ СОСТАВНОЙ КОНСТРУКЦИИ

Данные и схемы брать из таблицы 10 согласно номеру группы и вашему варианту.

Таблица 10

Задача 11. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ БЕЗ УЧЕТА ВЕСА

Рама состоит из двух частей, соединенных шарниром или скользящей заделкой. Размеры даны в метрах. Найти реакции опор.

Данные и схемы брать из таблицы 11 согласно номеру группы и вашему варианту.

Таблица 11

Задача 12. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ С УЧЕТОМ ВЕСА

Рама состоит из двух частей, соединенных шарниром или скользящей заделкой. Дан погонный вес рамы ρ , размеры и нагрузки. Найти реакции опор.

Данные и схемы брать из таблицы 12 согласно номеру группы и вашему варианту.

Таблица 12

Задача 13. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ПЛАСТИНЫ И УГОЛКА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Данные и схемы брать из таблицы 13 согласно номеру группы и вашему варианту.

Таблица 13

Задача 14. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ С НИТЬЮ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Конструкция состоит из прямоугольной пластины и жесткого уголка, изогнутого под прямым углом. Тела соединены двумя невесомыми стержнями. Определить реакции опор конструкции (в кН). Размеры даны в метрах.

Данные и схемы брать из таблицы 14 согласно номеру группы и вашему варианту.

Таблица 14

Задача 15. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ

Определить реакции опор конструкции (в кН), состоящей из трех тел, соединенных в точке С шарниром. Размеры указаны в метрах.

Данные и схемы брать из таблицы 15 согласно номеру группы и вашему варианту.

Таблица 15

Задача 16. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Найти реакции опор составной конструкции. Размеры даны в метрах.

Данные и схемы брать из таблицы 16 согласно номеру группы и вашему варианту.

Таблица 16

Задача 17. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ С РАСПРЕДЕЛЕННЫМИ НАГРУЗКАМИ

Найти реакции опор плоской составной рамы, находящейся под действием линейно распределенной нагрузки с максимальной интенсивностью q 1 и нагрузки с интенсивностью q 2 , равномерно распределенной по дуге окружности. Участок CD представляет собой четверть окружности радиуса R с центром О .

Данные и схемы брать из таблицы 17 согласно номеру группы и вашему варианту.

Таблица 17

Задача 18. РАСЧЕТ ПРОСТОЙ СОСТАВНОЙ КОНСТРУКЦИИ ДЛЯ ЗАЧЕТОВ И ЭКЗАМЕНОВ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Определить реакции опор конструкции (в кН), состоящей из двух тел.

Данные и схемы брать из таблицы 18 согласно номеру группы и вашему варианту.

Таблица 18

Задача 19. ТРЕНИЕ КАЧЕНИЯ

Система состоит из двух цилиндров весом G 1 и G 2 с одинаковыми радиусами R соединенных однородным стержнем весом G 3 . Цилиндры могут кататься без проскальзывания, цилиндр 1 без сопротивления, а цилиндр 2 с трением качения (δ ). В каких пределах меняется внешний момент М при условии равновесия системы?

Данные и схемы брать из таблицы 19 согласно номеру группы и вашему варианту.

Таблица 19

ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ

Задача 20. ПРОСТРАНСТВЕННАЯ ФЕРМА

Найти усилия в стержнях 1-6 пространственной фермы, нагруженной в одном узле вертикальной силой G и горизонтальной F . Ответ выразить в кН.

Данные и схемы брать из таблицы 20 согласно номеру группы и вашему варианту.

Таблица 20

Задача 21. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ПРОСТЕЙШЕМУ ВИДУ

Систему трех сил, приложенных к вершинам параллелепипеда, привести к началу координат. Найти координаты точки пересечения центральной винтовой оси с плоскостью xy . Размеры на рисунках даны в м , силы в – Н.

Данные и схемы брать из таблицы 21 согласно номеру группы и вашему варианту.

Таблица 21

Задача 22. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ОСЕЙ

Найти моменты сил относительно осей. Размеры на рисунках даны в м , силы в – Н.

Данные и схемы брать из таблицы 22 согласно номеру группы и вашему варианту.

Таблица 22

Задача 23. ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ, ПОДДЕРЖИВАЮЩИХ ПЛИТУ

Однородная прямоугольная горизонтальная плита весом G опирается на шесть невесомых шарнирно закрепленных по концам стержней. Вдоль ребра плиты действует сила F . Определить усилия в стержнях (в кН).

Данные и схемы брать из таблицы 23 согласно номеру группы и вашему варианту.

Таблица 23

Задача 24. ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В ОПОРАХ, ПОДДЕРЖИВАЮЩИХ ПОЛКУ

G имеет в точке А сферическую опору и поддерживается двумя невесомыми, шарнирно закрепленными по концам, стержнями (горизонтальным и вертикальным) и подпоркой BC . К полке приложена сила F , направленная вдоль одного из ее ребер. Определить реакции опор (в кН).

Данные и схемы брать из таблицы 24 согласно номеру группы и вашему варианту.

Таблица 24

Задача 25. ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В ОПОРАХ, ПОДДЕРЖИВАЮЩИХ ПОЛКУ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Горизонтальная однородная прямоугольная полка весом G имеет в точке А сферическую опору и поддерживается двумя невесомыми, шарнирно закрепленными по концам, стержнями (горизонтальным 1 и вертикальным 2) и подпоркой BC . К полке приложена сила F , направленная вдоль одного из ее ребер. Определить реакции опор (в кН).

Данные и схемы брать из таблицы 25 согласно номеру группы и вашему варианту.

Таблица 25

Задача 26. РАВНОВЕСИЕ ВАЛА

Горизонтальный вал весом G может вращаться в цилиндрических шарнирах А и В . К шкиву 1 приложено нормальное давление N и касательная сила сопротивления F , пропорциональная N . На шкив 2 действуют сила натяжения ремней T 1 и T 2 . Груз Q висит на нити, навитой на шкив 3. Определить силу давления N и реакции шарниров в условии равновесия вала (в Н). Учесть веса шкивов P 1 , P 2 , P 3 . Все нагрузки действуют в вертикальной плоскости. Силы даны в Н, размеры в – см.

Данные и схемы брать из таблицы 26 согласно номеру группы и вашему варианту.

Таблица 26

ЦЕНТР ТЯЖЕСТИ

Задача 27. ЦЕНТР ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ

Найти площадь (в м 2 ) и координаты центра тяжести плоской фигуры (в м). Отметки на осях даны в метрах. Криволинейный участок контура является дугой половины или четверти окружности.

Данные и схемы брать из таблицы 27 согласно номеру группы и вашему варианту.

Таблица 27

Задача 28. ЦЕНТР ТЯЖЕСТИ ОБЪЕМНОГО ТЕЛА

Найти координаты центра тяжести однородного объемного тела. Размеры даны в метрах.

Данные и схемы брать из таблицы 28 согласно номеру группы и вашему варианту.

Таблица 28

Задача 29. ЦЕНТР ТЯЖЕСТИ ПРОСТРАНСТВЕННОЙ СТЕРЖНЕВОЙ ФИГУРЫ

Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней. Размеры даны в метрах.

Данные и схемы брать из таблицы 29 согласно номеру группы и вашему варианту.

Таблица 29

КИНЕМАТИКА

ДВИЖЕНИЕ ТОЧКИ

Задача 30. ДВИЖЕНИЕ ТОЧКИ В ПЛОСКОСТИ

Точка движется по закону x = x (t ) и y = y (t ). Для момента времени t = t 1 найти скорость, ускорение точки и радиус кривизны траектории (x и y даны в см, t 1 в сек).

Данные и схемы брать из таблицы 30 согласно номеру группы и вашему варианту.

Таблица 30

Задача 31. ДВИЖЕНИЕ ТОЧКИ В ПРОСТРАНСТВЕ. ДЕКАРТОВЫ КООРДИНАТЫ

Точка движется по закону x = x (t ), y = y (t ) и z = z (t ). Определить скорость, ускорение точки и радиус кривизны траектории при t = t 1 . (x , y и z даны в см, t и t 1 в сек).

Данные и схемы брать из таблицы 31 согласно номеру группы и вашему варианту.

Таблица 31

Задача 32. ЕСТЕСТВЕННЫЙ СПОСОБ ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ

Точка движется по плоской кривой y = y (t )с постоянной скоростью v . Определить ускорение точки, радиус кривизны траектории и косинус угла наклона касательной к траектории с осью ox при заданном значении x .

Данные и схемы брать из таблицы 32 согласно номеру группы и вашему варианту.

Таблица 32

Задача 33. ДВИЖЕНИЕ ТОЧКИ В ПОЛЯРНЫХ КООРДИНАТАХ

Задан закон движения точки в полярных координатах: ρ = ρ (t ) (в метрах), φ = φ (t ). В указанный момент времени найти скорость и ускорение точки в полярных, декартовых и естественных координатах.

Данные и схемы брать из таблицы 33 согласно номеру группы и вашему варианту.

Таблица 33

ПЛОСКОЕ ДВИЖЕНИЕ

Задача 34 . СКОРОСТИ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА

Плоский многозвенный механизм с одной степенью свободы приводится в движение кривошипом, который вращается против часовой стрелки с постоянной угловой скоростью. Найти скорости точек механизма (в см /с) и угловые скорости его звеньев (в рад/с). Размеры даны в см .

Данные и схемы брать из таблицы 34 согласно номеру группы и вашему варианту.

Таблица 34

Задача 35. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА (4 ЗВЕНА)

Найти скорости и ускорения шарниров плоского механизма.

Данные и схемы брать из таблицы 35 согласно номеру группы и вашему варианту.

Таблица 35

Задача 36. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА (6 ЗВЕНЬЕВ)

Найти скорости точек A , B , C , D , F , G и ускорения указанных точек.

Данные и схемы брать из таблицы 36 согласно номеру группы и вашему варианту.

Таблица 3 6

Задача 37. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана угловая скорость одного из его звеньев. Длины звеньев даны в сантиметрах. Найти угловые скорости звеньев механизма.

Данные и схемы брать из таблицы 37 согласно номеру группы и вашему варианту.

Таблица 37

Задача 38. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана угловая скорость одного из звеньев. Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать горизонтальными или вертикальными. Диск катится по горизонтальной поверхности без проскальзывания. Найти угловые скорости всех звеньев механизма.

Данные и схемы брать из таблицы 38 согласно номеру группы и вашему варианту.

Таблица 38

Задача 39. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА С ДИСКОМ (СЛОЖНАЯ ГЕОМЕТРИЯ) (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механизм изображен в произвольном положении, определяемом некоторым углом φ . Задана угловая скорость одного из звеньев или скорость центра диска. Длины звеньев даны в сантиметрах, радиус диска равен 5 см. Заданы координаты шарнира С и ордината оси диска в осях с началом в шарнире О . Диск катится без проскальзывания. Найти угловые скорости всех звеньев механизма и скорость центра диска (если она не задана) при φ = φ 0 .

Данные и схемы брать из таблицы 39 согласно номеру группы и вашему варианту.

Таблица 39

Задача 40. УГЛОВЫЕ УСКОРЕНИЯ ЗВЕНЬЕВ ТРЕХЗВЕННОГО МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана постоянная угловая скорость звена ОА . Длины звеньев даны в сантиметрах. Звенья, направления которых не указано, принимать вертикальными или горизонтальными. Ползун B движется горизонтально, ползун С – вертикально. Найти угловые ускорения звеньев механизма.

Данные и схемы брать из таблицы 40 согласно номеру группы и вашему варианту.

Таблица 40

Задача 41. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма заданы угловые скорости двух его звеньев. Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать вертикальными или горизонтальными. Найти угловые скорости всех звеньев механизма.

Данные и схемы брать из таблицы 41 согласно номеру группы и вашему варианту.

Таблица 41

Задача 42. УРАВНЕНИЕ ТРЕХ УГЛОВЫХ СКОРОСТЕЙ

Подобрать длины звеньев (в см) шарнирного четырехзвенника так, чтобы в некоторый момент движения угловые скорости его звеньев были бы равны заданным. Положение опорных шарниров четырехзвенника известно. Расстояния даны в см, угловые скорости - в рад/с .

Данные и схемы брать из таблицы 42 согласно номеру группы и вашему варианту.

Таблица 42

Задача 43. УРАВНЕНИЕ ТРЕХ УГЛОВЫХ УСКОРЕНИЙ

Многозвенный механизм приводится в движение кривошипом ОА или ВС , вращающимся с известной угловой скоростью и известным угловым ускорением. Найти угловые скорости и угловые ускорения звеньев механизма. Длины звеньев даны в см, угловые скорости в рад/с, угловые ускорения – в рад/с 2 . Стержни, положение которых не определено углом, вертикальны или горизонтальны.

Данные и схемы брать из таблицы 43 согласно номеру группы и вашему варианту.

Таблица 43

СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ

Задача 44. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ТЕЛА ПРИ ВРАЩАТЕЛЬНОМ ДВИЖЕНИИ (ТЕКСТОВЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 44 согласно номеру группы и вашему варианту.

Таблица 44

Задача 45. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ТЕЛА ПРИ ВРАЩАТЕЛЬНОМ ДВИЖЕНИИ

Тело равноускоренно вращается из состояния покоя с угловым ускорением ε . Найти скорость и ускорение точки тела с радиусом-вектором r через время t после начала движения.

Данные и схемы брать из таблицы 45 согласно номеру группы и вашему варианту.

Таблица 45

Задача 46. ПЕРЕДАЧА ВРАЩЕНИЙ

Данные и схемы брать из таблицы 46 согласно номеру группы и вашему варианту.

Таблица 46

Задача 47. СФЕРИЧЕСКОЕ ДВИЖЕНИЕ

Твердое тело совершает сферическое движение, заданном углами Эйлера. Найти скорость и ускорение точки, положение которой дано относительно подвижных осей координат.

Данные и схемы брать из таблицы 47 согласно номеру группы и вашему варианту.

Таблица 47

Задача 48. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ В ПЛОСКОСТИ

Геометрическая фигура вращается вокруг оси, перпендикулярной ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону σ (t ). Найти абсолютную скорость и абсолютное ускорение точки при t = t 1 . Даны функция σ (t ), закон вращения фигуры φ e (t ω e ), время t 1 и размеры фигуры. ВМ или АМ – длина отрезка прямой или дуги окружности.

Данные и схемы брать из таблицы 48 согласно номеру группы и вашему варианту.

Таблица 48

Задача 49. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ В ПРОСТРАНСТВЕ

Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону AM (t ) или BM (t ) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t 1 . Даны закон вращения фигуры φ e (t ) (или постоянная угловая скорость ω e ), время t 1 и размеры фигуры. Углы даны в рад, размеры – в см. Длина ВМ или АМ – длина отрезка прямой или дуги окружности, АВ – длина отрезка прямой.

Данные и схемы брать из таблицы 49 согласно номеру группы и вашему варианту.

Таблица 49

Задача 50. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. ЧЕТЫРЕХЗВЕННИК

Плоский шарнирно-стержневой механизм приводится в движение кривошипом ОА , который вращается против часовой стрелки с постоянной угловой скоростью ω . Вдоль стержня А движется точка М по закону AM = σ (t ) или BM = σ (t ). Положение механизма при t = t 1 указано на рисунке. Все размеры даны в см. Стержни, положение которых не задано углом, горизонтальны или вертикальны. Найти абсолютную скорость и абсолютное ускорение точки М в этот момент.

Данные и схемы брать из таблицы 50 согласно номеру группы и вашему варианту.

Таблица 50

Задача 51. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. МЕХАНИЗМ С МУФТОЙ

Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты, скользящей по направляющему стержню и шарнирно закрепленной на другом стержне или вращающейся на неподвижном шарнире. Кривошип ОА вращается против часовой стрелки с постоянной угловой скоростью ω OA . Горизонтальные и вертикальные размеры на рисунках даны для неподвижных шарниров и для линий движения ползунов (в см ). Найти скорость муфты D (или E ) относительно направляющего стержня (в см /с).

Данные и схемы брать из таблицы 51 согласно номеру группы и вашему варианту.

Таблица 51

Задача 52. ЗАДАЧИ ПО КИНЕМАТИКЕ ПОВЫШЕННОЙ СЛОЖНОСТИ

Данные и схемы брать из таблицы 52 согласно вашему варианту.

Таблица 52

ДИНАМИКА

Задача 53. ДИНАМИКА ТОЧКИ

Данные и схемы брать из таблицы 53 согласно вашему варианту.

Таблица 53

Задача 54. ДИНАМИКА ТОЧКИ (ТЕКСТОВЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 54 согласно вашему варианту.

Таблица 5 4

Задача 55. ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ

На прямолинейном участке пути шайба разгоняется в течение времени t = t 1 переменной силой F , направленной под углом γ к перемещению. На криволинейном участке оси, изогнутой по дуге окружности радиуса r (геометрический центр в точке О ), действует постоянная сила сопротивления F fr . Участки оси сопрягаются в точке В без излома. Вся траектория находится в вертикальной плоскости. Сила F дана в Н. В зависимости от варианта найти расстояние b , скорость v A или силу F fr .

Данные и схемы брать из таблицы 55 согласно номеру группы и вашему варианту.

Таблица 5 5

Задача 56. ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме D , находящейся на горизонтальной плоскости. Трение между призмой и плоскостью отсутствует. Груз А получает перемещение S =1 м относительно призмы вдоль ее поверхности влево или (в тех вариантах, где он висит) по вертикали вниз. Куда и на какое расстояние переместится призма?

Данные и схемы брать из таблицы 56 согласно номеру группы и вашему варианту.

Таблица 5 6

Задача 57 . ДИНАМИЧЕСКИЕ РЕАКЦИИ ВАЛА

На оси, вращающейся в подшипниках под действием момента, закреплен ротор, состоящий из цилиндра и жесткого невесомого стержня с точечной массой на конце. Ось цилиндра составляет малый угол с осью вращения. Найти динамические составляющие реакций подшипников.

Данные и схемы брать из таблицы 57 согласно номеру группы и вашему варианту.

Таблица 57

Задача 58. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ. ПРИВЕДЕННЫЕ МАССЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механическая система, состоящая из пяти тел A , B , C , D , E , движется под действием внешних сил. Заданы радиусы цилиндров и блоков. Радиусы инерции даны для блоков, цилиндры считать однородными. Горизонтальный стержень, находящийся в зацеплении с блоками, считать невесомым. Массы даны в килограммах, радиусы - в сантиметрах. Вычислить приведенную массу системы μ в формуле T = μ , где v A - скорость груза A .

Данные и схемы брать из таблицы 58 согласно номеру группы и вашему варианту.

Таблица 5 8

Задача 59. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (1)

Механическая система с одной степенью свободы состоит из тел совершающих плоское движение. Под действием сил тяжести система из состояния покоя приходит в движение. Какую скорость приобретет груз А , переместившись (вверх или вниз) на S =1 м? Качение цилиндра (или блока) происходит без проскальзывания с коэффициентом трения качения δ . Коэффициент трения скольжения f . Радиусы инерции i C , i D . Внешние радиусы R C , R D , внутренние r C , r D .

Данные и схемы брать из таблицы 59 согласно номеру группы и вашему варианту.

Таблица 5 9

Задача 60. ДИНАМИЧЕСКИЙ РАСЧЕТ МЕХАНИЗМА С НЕИЗВЕСТНЫМ ПАРАМЕТРОМ. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (2)

Механическая система, состоящая из четырех тел A , B , C , D и пружины, под действием внешних сил приходит в движение из состояния покоя. Один из параметров системы (жесткость пружины с или момент трения M fr , B на оси B ) неизвестен. Учитывается трение скольжения с коэффициентом f и трение качения с коэффициентом δ fr . Заданы радиусы цилиндра и блока. Радиусы инерции даны для блоков, цилиндры считать однородными.

Данные и схемы брать из таблицы 60 согласно номеру группы и вашему варианту.

Таблица 60

Задача 61. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (3)

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Между грузомА и призмой имеется трение (кроме тех вариантов, где груз висит), качение цилиндра (блока) происходит без проскальзывания. Коэффициент трения скольжения груза о плоскость f , коэффициент трения качения цилиндра (блока) δ . Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А , переместившись на расстояние S A ?

Данные и схемы брать из таблицы 61 согласно номеру группы и вашему варианту.

Таблица 61

Задача 62. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ БЕЗ УЧЕТА ТРЕНИЯ

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела параллельны плоскостям. Какую скорость развил груз А , переместившись на расстояние S A ?

Данные и схемы брать из таблицы 62 согласно номеру группы и вашему варианту.

Таблица 62

АНАЛИТИЧЕСКАЯ МЕХАНИКА

Задача 63. ВЫЧИСЛЕНИЕ ЧИСЛА СТЕПЕНЕЙ СВОБОДЫ МЕХАНИЧЕСКОЙ СИСТЕМЫ

Определить число степеней свободы системы по формуле W =3Д-2Ш-С.

Данные и схемы брать из таблицы 63 согласно номеру группы и вашему варианту.

Таблица 63

Задача 64. ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ ДЛЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ

Плоский шарнирно-стержневой механизм с одной степенью свободы движется в вертикальной плоскости под действием сил тяжести и момента М , который вращает звено ОА с постоянной угловой скоростью ω OA . В узлах А , В, С и в центре Е звена АВ расположены материальные точки. На осях неподвижных шарниров О и D имеется трение с постоянным моментом M fr . Сила сопротивления движению ползуна – F fr , остальные связи идеальные. Пренебрегая массами стержней, определить величину момента М .

Данные и схемы брать из таблицы 64 согласно номеру группы и вашему варианту.

Таблица 64

Задача 65. ПРИНЦИП ВОЗМОЖНЫХ СКОРОСТЕЙ (ОПРЕДЕЛЕНИЕ РЕАКЦИЙ ОПОР)

Система с идеальными стационарными связями, состоящая из четырех шарнирно соединенных однородных стержней, расположенных в вертикальной плоскости, находится в равновесии под действием силы F и момента М . Учитывая погонный вес стержней ρ , определить реакции опор (в Н).

Данные и схемы брать из таблицы 65 согласно номеру группы и вашему варианту.

Таблица 65

Задача 66. ПРИНЦИП ВОЗМОЖНЫХ СКОРОСТЕЙ. МЕХАНИЗМ С ДИСКОМ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механизм с идеальными стационарными связями находится в равновесии под действием силы F и моментов M 1 и M 2 . Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать горизонтальными или вертикальными. Диск касается горизонтальной поверхности без проскальзывания. Найти величину F .

Данные и схемы брать из таблицы 66 согласно номеру группы и вашему варианту.

Таблица 66

Задача 67 . ДИНАМИКА КУЛИСЫ

Получить уравнение движения кулисного механизма. Найти значение углового ускорения при t =0.

Данные и схемы брать из таблицы 67 согласно номеру группы и вашему варианту.

Таблица 67

Задача 68. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механическая система из двух однородных цилиндров 1 и 2 и бруска 3 с идеальными стационарными связями имеет две степени свободы и движется под действием силы F . Трением пренебречь. Массы даны в килограммах, сила – в ньютонах. Найти ускорение бруска, скользящего по гладкой поверхности.

Данные и схемы брать из таблицы 68 согласно номеру группы и вашему варианту.

Таблица 68

Задача 69. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (1)

Механическая система с идеальными стационарными связями имеет две степени свободы и движется под действием сил тяжести. Три элемента механизма наделены массами, кратными некоторой массе m . Трением пренебречь. Подвижные и неподвижные блоки считать однородными цилиндрами. Найти ускорение груза А или центра цилиндра А .

Данные и схемы брать из таблицы 69 согласно номеру группы и вашему варианту.

Таблица 69

Задача 70. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (2)

Механическая система с идеальными стационарными связями имеет две степени свободы и состоит из пяти тел. Блок (или однородный цилиндр) D катится без проскальзывания по неподвижной горизонтальной плоскости или по подвижной тележке массой . Массой колес тележки пренебречь. Грузы А , В и ось однородного цилиндра Е перемещаются вертикально под действием сил тяжести. Радиусы инерции

Задача 71. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА ДЛЯ КОНСЕРВАТИВНЫХ СИСТЕМ

Консервативная механическая система с идеальными стационарными связями имеет две степени свободы и представляет собой механизм, состоящий из груза А , блока В (больший радиус R , меньший r , радиус инерции i B ) и цилиндра С радиусом R C . Механизм установлен на призме D , закрепленной на осях двух однородных цилиндров Е . К призме приложена постоянная по величине горизонтальная сила F . Качение цилиндра С (блока В ) и цилиндров Е происходит без проскальзывания. Трением качения и скольжения пренебречь. Используя уравнение Лагранжа 2-го рода для консервативных систем, найти ускорение призмы.

Данные и схемы брать из таблицы 71 согласно номеру группы и вашему варианту.

Таблица 71

Задача 72. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 72 согласно номеру группы и вашему варианту.

.

Данные и схемы брать из таблицы 73 согласно номеру группы и вашему варианту.

Таблица 73

Задача 74. ФУНКЦИЯ ГАМИЛЬТОНА

Найти функцию Гамильтона механической системы с двумя степенями свободы по известной функции Лагранжа.

Данные и схемы брать из таблицы 74 согласно номеру группы и вашему варианту.

Таблица 74

Задача 75. ФУНКЦИЯ ГАМИЛЬТОНА

Получить уравнения движения в форме Гамильтона для консервативной системы с одной степенью свободы.

Данные и схемы брать из таблицы 75 согласно номеру группы и вашему варианту.

Таблица 75

ТЕОРИЯ КОЛЕБАНИЙ

Задача 76. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (1)

Найти собственную частоту системы. В ответах даны инерционные коэффициенты и частота ω . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 76 согласно номеру группы и вашему варианту.

Таблица 76

Задача 77. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (2). ЧАСТОТНЫЙ АНАЛИЗ

Найти жесткость одной из пружин, при которой разность собственных частот системы будет минимальна. В ответах даны инерционные коэффициенты и две собственные частоты системы. Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 77 согласно номеру группы и вашему варианту.

Таблица 77

Задача 78. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (3). ПРЕДЕЛЬНЫЕ ЧАСТОТЫ

В ответах даны инерционные коэффициенты, две собственные частоты ω k и три предельные частоты ω limk . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 78 согласно номеру группы и вашему варианту.

Таблица 78

Задача 79. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (4). ЦИЛИНДРЫ

Механическая система с двумя степенями свободы состоит из двух однородных цилиндров и нескольких линейно однородных пружин с одинаковой жесткость с . Цилиндры катаются без проскальзывания и сопротивления по горизонтальной поверхности, пружины в положении равновесия не имеют предварительного напряжения. Массой пружин пренебречь. Определить частоты собственных колебаний системы. В ответах даны инерционные коэффициенты и частота ω . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 79 согласно номеру группы и вашему варианту.

Таблица 79

Задача 80. КОЛЕБАНИЯ УЗЛА ФЕРМЫ

В одном из шарниров плоской фермы (на рисунке выделен ) находится точка с массой m . Стержни фермы упругие. Жесткость стержней