Ядерные и плазменные ракетные двигатели. Ядерный ракетный двигатель и ядерный пврд

Сергеев Алексей, 9 «А» класс МОУ «СОШ №84»

Научный консультант: , заместитель директора некоммерческого партнерства по научной и инновационной деятельности «Томский Атомный Центр»

Руководитель: , учитель физики МОУ «СОШ №84» ЗАТО Северск

Введение

Двигательные установки на борту космического аппарата предназначены для создания силы тяги или момента импульса. По типу используемой тяги двигательной установки разделяются на химические (ХРД) и нехимические (НХРД). ХРД делятся на жидкостные (ЖРД), твердотопливные (РДТТ) и комбинированные (КРД). В свою очередь нехимические двигательные установки делятся на ядерные (ЯРД) и электрическими (ЭРД). Великий ученый Константин Эдуардович Циолковский еще век назад создал первую модель двигательной установки, которая работала на твердом и жидком топливе. После, во второй половине 20 века были осуществлены тысячи полетов с использованием в основном ЖРД и РДТТ.

Однако в настоящее время для полетов на другие планеты, не говоря уж о звездах, применение ЖРД и РДТТ становится все более невыгодным, хотя и было разработано множество РД. Скорее всего, возможности ЖРД и РДТТ себя полностью исчерпали. Причина здесь заключается в том, что удельный импульс всех химических РД невысок и не превышает 5000 м/с, что требует для развития достаточно больших скоростей длительной работы ДУ и соответственно больших запасов топлива или, как принято в космонавтике, необходимы большие значения числа Циолковского, т. е. отношения массы заправленной ракеты к массе пустой. Так РН Энергия, выводящая на низкую орбиту 100 т полезной нагрузки, имеет стартовую массу около 3 000 т, что дает для числа Циолковского значение в пределах 30.

Для полета к примеру на Марс число Циолковского должно быть еще выше, достигая значений от 30 до 50. Нетрудно оценить, что при полезном грузе около 1 000 т, а именно в таких пределах колеблется минимальная масса требуемая для обеспечения всем необходимым экипаж, стартующий к Марсу с учетом запаса топлива для обратного полета к Земле, начальная масса КА должна быть не менее 30 000 т., что явно находится за пределами уровня развития современной космонавтики, основанной на применении ЖРД и РДТТ.

Таким образом, для достижения пилотируемыми экипажами даже ближайших планет необходимо развивать РН на двигателях, работающих на принципах, отличных от химических ДУ. Наиболее перспективными в этом плане являются электрические реактивные двигатели (ЭРД), термохимические ракетные двигатели и ядерные реактивные (ЯРД).

1.Основные понятия

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот . /1/

Классификация двигательных установок

2. Назначение ракетных двигателей

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород . Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве

3.Термохимические ракетные двигатели.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

DIV_ADBLOCK345">

2 – основные камеры сгорания;

3 – силовая рама;

4 – газогенератор;

5 – теплообменник на турбине;

6 – насос окислителя;

7 – насос горючего

Большую силу тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура этой струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода и кислорода. Основные данные типичных топлив для жидкостных реактивных двигателей приведены в таблице №1

Но у кислорода наряду с достоинствами есть и один недостаток – при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя ведь в этом случае пришлось бы его хранить под большим давлением в массивных баллонах. Поэтому уже Циолковский, первым предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде как о компоненте без которого космические полеты не будут возможны. Чтобы превратить кислород в жидкость, его нужно охладить до температуры -183°С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя долго держать снаряженной ракету, двигатель которой использует в качестве окислителя жидкий кислород. Заправлять кислородный бак такой ракеты приходится непосредственно перед запуском. Если такое возможно для космических и других ракет гражданского назначения, то для военных ракет, которые требуется поддерживать в готовности к немедленному запуску в течение длительного времени такое неприемлемо. Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся» окислителем. Этим объясняется её прочное положение в ракетной технике, особенно военной, несмотря на существенно меньшую силу тяги, которую она обеспечивает. Использование наиболее сильного из всех известных химии окислителей – фтора позволит существенно увеличить эффективность жидкостных реактивных двигателей. Однако жидкий фтор очень неудобен в эксплуатации и хранении из-за ядовитости и низкой температуры кипения (-188°С). Но это не останавливает ученых-ракетчиков: экспериментальные двигатели на фторе уже существуют и испытываются в лабораториях и на экспериментальных стендах. Советский ученый еще в тридцатые годы в своих трудах предложил использовать в межпланетных полетах в качестве горючего легкие металлы, из которых будет изготовлен космический корабль – литий, бериллий, алюминий и др. В особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую из возможных для химических топлив скорость истечения – до 5 км/с. Но это уже практически предел ресурсов химии. Большего она практически сделать не может. Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ. Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию. В целом твердотопливные ракетные двигатели не имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

4.Электрические ракетные двигатели

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром. В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции . Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с. Первый электрический ракетный двигатель был разработан в Советском Союзе в гг. под руководством (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ)./10/

5.Другие виды двигателей

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна. Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей

Импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

Термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*1011 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

Солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

6.Ядерные ракетные двигатели

Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества. Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор , в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается. У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость. В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак , гидразин и вода. Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер. Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210Ро она равна 5*10 8КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг. К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте. В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233U, 235U, 238U, 239Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с. В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу. Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах. Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».

7.Ядерные реактивные двигатели, принцип работы, способы получения импульса в ЯРД.

ЯРД получили свое название благодаря тому, что создают тягу за счет использования ядерной энергии, т. е. энергии, которая выделяется в результате ядерных реакций. В общем смысле под этими реакциями подразумеваются любые изменения энергетического состояния атомных ядер, а также превращения одних ядер в другие, связанные с перестройкой структуры ядер или изменением количества содержащихся в них элементарных частиц - нуклонов. Причем ядерные реакции, как известно, могут происходить либо спонтанно (т. е. самопроизвольно), либо вызываться искусственно, например, при бомбардировке одних ядер другими (или элементарными частицами). Ядерные реакции деления и синтеза по величине энергии превосходят химические реакции соответственно в миллионы и десятки миллионов раз. Это объясняется тем обстоятельством, что энергия химической связи атомов в молекулах во много раз меньше энергии ядерной связи нуклонов в ядре. Ядерную энергию в ракетных двигателях можно использовать двумя способами:

1. Высвобождаемая энергия используется для нагрева рабочего тела, которое затем расширяется в сопле, так же как в обычном ЖРД.

2. Ядерная энергия преобразуется в электрическую и затем используется для ионизации и разгона частиц рабочего тела.

3. Наконец импульс создается самими продуктами деления, образованными в процессе DIV_ADBLOCK349">

По аналогии с ЖРД исходное рабочее тело ЯРД хранится в жидком состоянии в баке двигательной установки и его подача производится при помощи турбонасосного агрегата. Газ для вращения этого агрегата, состоящего из турбины и насоса, может вырабатываться в самом реакторе.

Схема такой двигательной установки изображена на рисунке.

Существует множество ЯРД с реактором деления:

Твердофазный

Газофазный

ЯРД с реактором синтеза

Импульсные ЯРД и другие

Из всех возможных типов ЯРД наиболее разработаны тепловой радиоизотопный двигатель и двигатель с твердофазным реактором деления. Но если характеристики радиоизотопных ЯРД не позволяют надеяться на их широкое применение в космонавтике (по крайней мере в ближайшем будущем), то создание твердофазных ЯРД открывает перед космонавтикой большие перспективы. Типичный ЯРД этого типа содержит твердофазный реактор в виде цилиндра с высотой и диаметром около 1-2 м (при близости этих параметров утечка нейтронов деления в окружающее пространство минимальна).

Реактор состоит из активной зоны; отражателя, окружающего эту зону; управляющих органов; силового корпуса и других элементов. Активная зона содержит ядерное горючее - делящееся вещество (обогащенный уран), заключенное в тепловыделяющих элементах, и замедлитель или разбавитель. Реактор, представленный на рисунке, является гомогенным - в нем замедлитель входит в состав тепловыделяющих элементов, будучи однородно перемешанным с горючим. Замедлитель может размещаться и отдельно от ядерного горючего. В этом случае реактор называется гетерогенным. Разбавители (ими могут быть, "например, тугоплавкие металлы - вольфрам, молибден) используются для придания делящимся веществам специальных свойств.

Тепловыделяющие элементы твердофазного реактора пронизаны каналами, по которым протекает, постепенно нагреваясь, рабочее тело ЯРД. Каналы имеют диаметр порядка 1-3 мм, а их суммарная площадь составляет 20-30% поперечного сечения активной зоны. Активная зона подвешивается при помощи специальной решетки внутри силового корпуса, с тем чтобы она могла расширяться при нагреве реактора (иначе она разрушилась бы из-за термических напряжений).

Активная зона испытывает высокие механические нагрузки, связанные с действием значительных гидравлических перепадов давления (до нескольких десятков атмосфер) от протекающего рабочего тела, термических напряжений и вибраций. Увеличение размеров активной зоны при нагреве реактора достигает нескольких сантиметров. Активная зона и отражатель размещаются внутри прочного силового корпуса, воспринимающего давление рабочего тела и тягу, создаваемую реактивным соплом. Корпус закрывается прочной крышкой. На ней размещаются пневматические, пружинные или электрические механизмы привода регулирующих органов, узлы крепления ЯРД к космическому аппарату, фланцы для соединения ЯРД с питающими трубопроводами рабочего тела. На крышке может располагаться и турбонасосный агрегат.

8 - Сопло,

9 - Расширяющийся сопловой насадок,

10 - Отбор рабочего вещества на турбину,

11 - Силовой корпус,

12 - Управляющий барабан,

13 - Выхлоп турбины (используется для управления ориентацией и увеличения тяги),

14 - Кольцо приводов управляющих барабанов)

В начале 1957 года было определено окончательное направление работ Лос-Аламосской лаборатории, и принято решение по строительству графитового ядерного реактора с диспергированным в графите урановым горючим. Созданный в этом направлении реактор «Киви-А» был испытан в 1959 году 1-го июля.

Американский твёрдофазный ядерный реактивный двигатель ХЕ Prime на испытательном стенде (1968.г)

Помимо строительства реактора Лос-Аламосская лаборатория вела полным ходом работы по строительству специального испытательного полигона в Неваде, а также выполняла ряд специальных заказов ВВС США в смежных областях (разработка отдельных узлов ТЯРД). По поручению Лос-Аламосской лаборатории все специальные заказы на изготовления отдельных узлов осуществляли фирмы: «Аэроджет дженерал», отделение «Рокетдайн» фирмы «Норс-америкен авиэйшн». Летом 1958 года весь контроль за выполнением программы «Ровер» перешёл от ВВС США к вновь организованному Национальному управлению по аэронавтике и космосу (НАСА). В результате специального соглашения между КАЭ и НАСА в середине лета 1960 года было образовано Управление космическими ядерными двигателями под руководством Г. Фингера, которое и возглавило программу «Ровер» в дальнейшем.

Полученные результаты шести «горячих испытаний» ядерных реактивных двигателей оказались весьма обнадёживающими, и в начале 1961 года был подготовлен доклад об испытаниях реактора (RJFT) в полёте. Затем в середине 1961 года стартовал проект «Нерва» (применение ядерного двигателя для космических ракет). В качестве генерального подрядчика была выбрана фирма «Аэроджет дженерал», а в качестве субподрядчика отвечающего за строительство реактора фирма «Вестингауз».

10.2 Работы по ТЯРД в России

Американец" href="/text/category/amerikanetc/" rel="bookmark">американцев российские ученые использовали наболее экономичные и эффективные испытания отдельных тепловыделяющих элементов в исследовательских реакторах. Весь комплекс произведённых работ в 70-80-е годы позволило в КБ «Салют», КБ химавтоматики, ИАЭ, НИКИЭТ и НПО «Луч» (ПНИТИ) разрабатывать различные проекты космических ЯРД и гибридных ядерных энергодвигательных установок. В КБ химавтоматики при научном руководстве НИИТП (за элементы реактора отвечали ФЭИ, ИАЭ, НИКИЭТ, НИИТВЭЛ, НПО "Луч", МАИ) создавались ЯРД РД 0411 и ядерный двигатель минимальной размерности РД 0410 тягой 40 и 3,6 т соответственно.

В результате были изготовлены реактор, «холодный» двигатель и стендовый прототип для проведения испытаний на газообразном водороде. В отличие от американского, с удельным импульсом не больше 8250 м/с, советский ТЯРД за счет применения более жаростойких и совершенных по конструкции тепловыделяющих элементов и высокой температуры в активной зоне имел этот показатель равным 9100 м/с и выше. Стендовая база для испытаний ТЯРД объединенной экспедиции НПО «Луч» размещалась в 50 км юго-западнее г. Семипалатинск-21 . Она начала работать в 1962 году. В гг. на полигоне испытывались натурные тепловыделяющие элементы прототипов ЯРД. При этом отработанный газ поступал в систему закрытого выброса. Стендовый комплекс для полноразмерных испытаний ядерных двигателей «Байкал-1» находится в 65 км к югу от г. Семипалатинск-21. С 1970 по 1988 год проведено около 30 «горячих пусков» реакторов. При этом мощность не превышала 230 МВт при расходе водорода до 16,5 кг/сек и его температуре на выходе из реактора 3100 К. Все запуски прошли успешно, безаварийно, и по плану.

Советский ТЯРД РД-0410 - единственный работающий и надёжный промышленный ядерный ракетный двигатель в мире

В настоящее время подобные работы на полигоне прекращены, хотя оборудование поддерживается в относительно работоспособном состоянии. Стендовая база НПО «Луч» - единственный в мире экспериментальный комплекс, где можно без значительных финансовых и временных затрат проводить испытания элементов реакторов ЯРД. Не исключено, что возобновление в США работ по ТЯРД для полетов к Луне и Марсу в рамках программы «Космическая исследовательская инициатива» с планируемым участием в них специалистов России и Казахстана приведет к возобновлению деятельности семипалатинской базы и осуществлению «марсианской» экспедиции в 2020-е годы.

Основные характеристики

· Удельный импульс на водороде: 910 - 980 сек (теор. до 1000 сек ).

· Скорость истечения рабочего тела (водород): 9100 - 9800 м/сек.

· Достижимая тяга: до сотен и тысяч тонн.

· Максимальные рабочие температуры: 3000°С - 3700°С (кратковременное включение).

· Ресурс работы: до нескольких тысяч часов (периодическое включение). /5/

11.Устройство

Устройство советского твёрдофазного ядерного ракетного двигателя РД-0410

1 - магистраль от бака рабочего тела

2 - турбонасосный агрегат

3 - привод регулирующего барабана

4 - радиационная защита

5 - регулирующий барабан

6 - замедлитель

7 - тепловыделяющая сборки

8 - корпус реактора

9 - огневое днище

10 - магистраль охлаждения сопла

11- сопловая камера

12 - сопло

12.Принцип работы

ТЯРД по своему принципу работы представляет собой высокотемпературный реактор-теплообменник, в который вводится рабочее тело (жидкий водород) под давлением, и по мере его разогрева до высоких температур (свыше 3000°С) выбрасывается через охлаждаемое сопло. Регенерация тепла в сопле очень выгодна, так как позволяет значительно быстрее разогревать водород и утилизируя значительное количество тепловой энергии повысить удельный импульс до 1000 сек (9100- 9800 м/с).

Реактор ядерного ракетного двигателя

DIV_ADBLOCK356">

14.Рабочее тело

В качестве рабочего тела в ТЯРД применяется жидкий водород с дополнительно вводимыми функциональными добавками (гексан, гелий) как наиболее эффективный теплоноситель позволяющий достичь высоких значений удельного импульса. Помимо водорода может быть использован гелий, аргон и другие инертные газы. Но в случае применения гелия резко падает достижимый удельный импульс (в два раза) и резко возрастает стоимость теплоносителя. Аргон существенно дешевле гелия и может быть применён в ТЯРД, но его теплофизические свойства намного уступают гелию и тем более водороду (в 4 раза меньший удельный импульс). Более тяжёлые инертные газы из-за еще более худших теплофизических и экономических (высокая стоимость) показателей не могут быть применены в ТЯРД. Применение в качестве рабочего тела аммиака в принципе возможно, но при высоких температурах атомы азота образующегося при распаде аммиака вызывают высокотемпературную коррозию элементов ТЯРД. Кроме того достижимый удельный импульс настолько мал что уступает некоторым химическим топливам. В целом применение аммиака нецелесообразно. Использование углеводородов в качестве рабочего тела также возможно, но из всех углеводородов может быть применён только метан ввиду наибольшей стабильности. Углеводороды в большей степени показаны как функциональные добавки к рабочему телу. В частности добавка гексана к водороду улучшает работу ТЯРД в ядерно-физическом отношении и увеличивает ресурс работы карбидного топлива.

Сравнительные характеристики рабочих тел ЯРД

Рабочее тело

Плотность, г/см3

Удельная тяга (при указанных температурах в камере нагрева, °К), сек

0,071 (жидк)

0,682 (жидк)

1,000 (жидк)

нет. данн

нет. данн

нет. данн

(Примечание: Давление в камере нагрева 45,7 атм, расширение до давления 1 атм при неизменном химическом составе рабочего тела) /6/

15.Преимущества

Основным приемуществом ТЯРД перед химическими ракетными двигателями является получение более высокого удельного импульса, значительный энергозапас, компактность системы и возможность получения очень большой тяги (десятки, сотни и тысячи тонн в вакууме . В целом удельный импульс достигаемый в вакууме больше чем у отработанного двухкомпонентного химического ракетного топлива (керосин-кислород, водород-кислород) в 3-4 раза, а при работе на наивысшей теплонапряжённости в 4-5 раз. В настоящее время в США и России существует значительный опыт разработки и постройки таких двигателей, и в случае необходимости (специальные программы освоения космоса) такие двигатели могут быть произведены за короткое время и будут иметь разумную стоимость. В случае использования ТЯРД для разгона космических аппаратов в космосе, и при условии дополнительного использования пертурбационных манёврах с использованием поля тяготения крупных планет (Юпитер, Уран, Сатурн, Нептун) достижимые границы изучения Солнечной системы существенно расширяются, а время потребное для достижения дальних планет значительно сокращается. Кроме того ТЯРД могут быть успешно применены для аппаратов работающих на низких орбитах планет-гигантов с использованием их разряжённой атмосферы в качестве рабочего тела, или для работы в их атмосфере. /8/

16.Недостатки

Основным недостатком ТЯРД является наличие мощного потока проникающей радиации (гамма-излучение, нейтроны), а также вынос высокорадиоактивных соединений урана, тугоплавких соединений с наведённой радиацией, и радиоактивных газов с рабочим телом. В этой связи ТЯРД неприемлем для наземных пусков во избежание ухудшения экологической обстановки на месте пуска и в атмосфере. /14/

17.Улучшение характеристик ТЯРД. Гибридные ТЯРД

Как и у всякого ракетного или вообще любого двигателя, у твёрдофазного ядерного реактивного двигателя имеются существенные ограничения достижимых важнейших характеристик. Эти ограничения представляют собой невозможность устройству (ТЯРД) работать в области температур превышающих диапазон предельных рабочих температур конструкционных материалов двигателя. Для расширения возможностей и значительного увеличения главных рабочих параметров ТЯРД могут быть применены различные гибридные схемы в которых ТЯРД играет роль источника тепла и энергии и используются дополнительные физические способы ускорения рабочих тел. Наиболее надёжной, практически осуществимой, и имеющей высокие характеристики по удельному импульсу и тяге является гибридная схема с дополнительным МГД-контуром (магнитогидродинамическим контуром) разгона ионизированного рабочего тела (водород и специальные присадки). /13/

18.Радиационная опасность от ЯРД.

Работающий ЯРД является мощным источником радиации - гамма- и нейтронного излучения. Без принятия специальных мер, радиация может вызвать в космическом аппарате недопустимый нагрев рабочего тела и конструкции, охрупчивание металлических конструкционных материалов, разрушение пластмассовых и старение резиновых деталей, нарушение изоляции электрических кабелей, вывод из строя электронной аппаратуры. Радиация может вызвать наведенную (искусственную) радиоактивность материалов - активизацию их.

В настоящее время проблема радиационной защиты космических аппаратов с ЯРД считается в принципе решенной. Решены также и принципиальные вопросы, связанные с обслуживанием ЯРД на испытательных стендах и пусковых площадках. Хотя работающий ЯРД представляет опасность для обслуживающего персонала" уже через сутки после окончания работы ЯРД можно без всяких средств индивидуальной защиты находиться в течение нескольких десятков минут на расстоянии 50 м от ЯРД и даже подходить к нему. Простейшие средства защиты позволяют обслуживающему персоналу входить в рабочую зону ЯРД уже вскоре после испытаний.

Уровень заражения пусковых комплексов и окружающей среды, по-видимому, не будет препятствием использованию ЯРД на нижних ступенях космических ракет. Проблема радиационной опасности для окружающей среды и обслуживающего персонала в значительной степени смягчается тем обстоятельством, что водород, используемый в качестве рабочего тела, практически не активируется при прохождении через реактор. Поэтому реактивная струя ЯРД не более опасна, чем струя ЖРД./4/

Заключение

При рассмотрении перспектив развития и использования ЯРД в космонавтике следует исходить из достигнутых и ожидаемых характеристик различных типов ЯРД, из того, что может дать космонавтике их, применение и, наконец, из наличия тесной связи проблемы ЯРД с проблемой энергообеспечения в космосе и с вопросами развития энергетики вообще.

Как уже говорилось выше, из всех возможных типов ЯРД наиболее разработаны тепловой радиоизотопный двигатель и двигатель с твердофазным реактором деления. Но если характеристики радиоизотопных ЯРД не позволяют надеяться на их широкое применение в космонавтике (по крайней мере в ближайшем будущем), то создание твердофазных ЯРД открывает перед космонавтикой большие перспективы.

Предложен, например, аппарат с начальной массой 40000 т (т. е. примерно в 10 раз большей, чем у самых крупных современных ракет-носителей), причем 1/10 этой массы приходится на полезный груз, а 2/3 - на ядерных зарядов. Если каждые 3 с взрывать по одному заряду, то их запаса хватит на 10 дней непрерывной работы ЯРД. За это время аппарат разгонится до скорости 10000 км/с и в дальнейшем, через 130 лет, может достигнуть звезды Альфа Центавра.

Ядерные энергоустановки обладают уникальными характеристиками, к которым относятся практически неограниченная энергоемкость, независимость функционирования от окружающей среды, неподверженность внешним воздействиям (космической радиации, метеоритному повреждению, высоким и низким температурам и т. д.). Однако максимальная мощность ядерных радиоизотопных установок ограничена величиной порядка нескольких сот ватт. Это ограничение не существует для ядерных реакторных энергоустановок, что и предопределяет выгодность их использования при продолжительных полетах тяжелых космических аппаратов в околоземном пространстве, при полетах к дальним планетам Солнечной системы и в других случаях.

Преимущества твердофазных и других ЯРД с реакторами деления наиболее полно раскрываются при исследовании таких сложных космических программ, как пилотируемые полеты к планетам Солнечной системы (например, при экспедиции на Марс). В том случае увеличение удельного импульса РД позволяет решать качественно новые задачи. Все эти проблемы значительно облегчаются при использовании твердофазного ЯРД с удельным импульсом вдвое большим, чем у современных ЖРД. В этом случае становится также возможным заметно сократить сроки полетов.

Вероятнее всего, что уже в ближайшем будущем твердофазные ЯРД станут одними из самых распространенный РД. Твердофазный ЯРД можно будет использовать как аппараты для дальних полетов, например, на такие планеты как Нептун, Плутон и даже вылетать за пределы Солнечной Системы. Однако для полетов к звездам ЯРД, основанный на принципах деления не пригоден. В этом случае перспективными являются ЯРД или точнее термоядерные реактивные двигатели (ТРД), работающие на принципе реакций синтеза и фотонные реактивные двигатели (ФРД), источникам импульса в которых является реакция аннигиляции вещества и антивещества. Впрочем, скорее всего человечество для путешествия в межзвездном пространстве будет использовать иной, отличный от реактивного, способ передвижения.

В заключение приведу перефразировку известной фразы Эйнштейна - для путешествия к звездам человечество должно придумать нечто такое, которое было бы сравнимо по сложности и восприятию с ядерным реактором для неандертальца!

ЛИТЕРАТУРА

Источники:

1. "Ракеты и люди. Книга 4 Лунная гонка"-М: Знание, 1999.
2. http://www. lpre. de/energomash/index. htm
3. Первушин "Битва за звёзды. Космическое противостояние"-М: знание,1998.
4. Л. Гильберг "Покорение неба"- М: Знание, 1994.
5. http://epizodsspace. *****/bibl/molodtsov
6. "Двигатель", " Ядерные двигатели для космических аппаратов", №5 1999 г.

7. "Двигатель", "Газофазные ядерные двигатели для космических аппаратов",

№ 6, 1999 г
7. http://www. *****/content/numbers/263/03.shtml
8. http://www. lpre. de/energomash/index. htm
9. http://www. *****/content/numbers/219/37.shtml
10., Чекалин транспорт будущего.

М.: Знание, 1983.

11. , Чекалин освоения космоса.- М.:

Знание, 1988.

12.Губанов Б. «Энергия - Буран» - шаг в будущее // Наука и жизнь.-

13.Гэтланд К. Космическая техника.- М.: Мир, 1986.

14., Сергеюк и коммерция.- М.: АПН, 1989.

15 .СССР в космосе. 2005 год.-М.: АПН, 1989.

16. На пути в дальний космос // Энергия. - 1985. - № 6.

ПРИЛОЖЕНИЕ

Основные характеристики твёрдофазных ядерных реактивных двигателей

Страна-изготовитель

Двигатель

Тяга (Thrust) в вакууме, кН

Удельный импульс, сек

Работа проекта, год

NERVA/Lox Mixed Cycle

В России провели испытания системы охлаждения ядерной энергодвигательной установки (ЯЭДУ) - одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полеты. Зачем в космосе нужен ядерный двигатель, как он работает и почему «Роскосмос» считает эту разработку главным российским космическим козырем, рассказывают «Известия».

История атома

Если положить руку на сердце, то со времен Королева ракеты-носители, используемые для полетов в космос, кардинальных изменений не претерпели. Общий принцип работы - химический, основанный на сгорании топлива с окислителем, остается прежним. Меняются двигатели, система управления, виды топлива. Основа путешествий в космосе остается неизменной - реактивная тяга толкает ракету или космический аппарат вперед.

Очень часто можно услышать, что нужен серьезный прорыв, разработка, способная заменить реактивный двигатель, чтобы повысить эффективность и сделать полеты к Луне и Марсу более реалистичными. Дело в том, что в настоящее время едва ли не большая часть массы межпланетных космических аппаратов, - это топливо и окислитель. А что если отказаться от химического двигателя вообще и начать использовать энергию ядерного двигателя?

Идея создания ядерной двигательной установки не нова. В СССР развернутое постановление правительства по проблеме создания ЯРД было подписано еще в далеком 1958 году. Уже тогда были проведены исследования, показавшие, что, используя ядерный ракетный двигатель достаточной мощности, можно добраться до Плутона (еще не утратившего свой планетный статус) и обратно за шесть месяцев (два туда и четыре обратно), потратив на путешествие 75 т топлива.

Занимались в СССР разработкой ядерного ракетного двигателя, однако приближаться к реальному прототипу ученые стали только сейчас. Дело не в деньгах, тема оказалась настолько сложной, что ни одна из стран не смогла до сих пор создать работающий прототип, а в большинстве случаев всё заканчивалось планами и чертежами. В США проводились испытания двигательной установки для полета на Марс в январе 1965 года. Но дальше тестов KIWI проект NERVA по покорению Марса на ядерном двигателе не сдвинулся, да и был он значительно проще, чем нынешняя российская разработка. Китай поставил в свои планы космического развития создание ядерного двигателя поближе к 2045 году, что тоже очень и очень не скоро.

В России же новый виток работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем начался в 2010 году. Проект создается силами «Роскосмоса» и «Росатома» совместно, и его можно назвать одним из самых серьезных и амбициозных космических проектов последнего времени. Головным исполнителем по ЯЭДУ является Исследовательский центр им. М.В. Келдыша.

Ядерное движение

На протяжении всего времени разработки в прессу просачиваются новости о готовности то одной, то другой части будущего ядерного двигателя. При этом в целом, кроме специалистов, мало кто представляет себе, как и за счет чего он будет работать. Собственно, суть космического ядерного двигателя примерно такая же, как и на Земле. Энергия ядерной реакции используется для нагрева и работы турбогенератора-компрессора. Если говорить проще, то ядерная реакция используется для получения электричества, практически точно так же, как и на обычной атомной электростанции. А уже при помощи электричества работают электроракетные двигатели. В данной установке это ионные двигатели высокой мощности.

В ионных двигателях тяга создается путем создания реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле. Ионные двигатели есть и сейчас, они испытываются в космосе. Пока у них только одна проблема - практически все они имеют очень небольшую тягу, хоть и расходуют очень мало топлива. Для космических путешествий такие двигатели - прекрасный вариант, особенно если решить проблему получения электричества в космосе, что и сделает ядерная установка. К тому же работать ионные двигатели могут достаточно долго, максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет.

Если посмотреть на схему, можно заметить, что ядерная энергия начинает свою полезную работу совсем не сразу. Сначала нагревается теплообменник, затем вырабатывается электричество, оно уже используется для создания тяги ионного двигателя. Увы, более простым и эффективным образом использовать ядерные установки для движения человечество пока не научилось.

В СССР запускались спутники с ядерной установкой в составе комплекса целеуказания «Легенда» для морской ракетоносной авиации, но это были совсем маленькие реакторы, а их работы хватало только на выработку электричества для повешенных на спутник приборов. Советские космические аппараты имели мощность установки в три киловатта, сейчас же российские специалисты работают над созданием установки с мощностью более мегаватта.

Проблемы космического масштаба

Естественно, что проблем у ядерной установки в космосе гораздо больше, чем на Земле, и самая главная из них - это охлаждение. В обычных условиях для этого используется вода, очень эффективно поглощающая тепло двигателя. В космосе же сделать это нельзя, и ядерным двигателям требуется эффективная система охлаждения - причем тепло от них нужно отводить во внешнее космическое пространство, то есть делать это можно только в виде излучения. Обычно для этого в космических кораблях используются панельные радиаторы - из металла, с циркулирующей по ним жидкостью теплоносителем. Увы, такие радиаторы, как правило, имеют большой вес и габариты, кроме того, они никак не защищены от попадания метеоритов.

В августе 2015 года на авиасалоне МАКС была показана модель капельного охлаждения ядерных энергодвигательных систем. В ней жидкость, рассеянная в виде капель, пролетает в открытом космическом пространстве, охлаждается, а затем снова собирается в установку. Только представьте себе огромный космический корабль, в центре которого гигантская душевая установка, из которой вырываются наружу миллиарды микроскопических капель воды, летят в космосе, а затем засасываются в огромный раструб космического пылесоса.

Совсем недавно стало известно, что капельная система охлаждения ядерной двигательной установки была испытана в земных условиях. При этом система охлаждения - это важнейший этап в создании установки.

Теперь дело за тем, чтобы испытать ее работоспособность в условиях невесомости и уже только после этого систему охлаждения можно будет пробовать создать в размерах, требуемых для установки. Каждое такое успешное испытание по чуть-чуть приближает российских специалистов к созданию ядерной установки. Ученые спешат изо всех сил, ведь считается, что вывод ядерного двигателя в космос сможет России помочь вернуть лидерские позиции в космосе.

Ядерная космическая эра

Допустим, это получится, и уже через несколько лет в космосе начнет свою работу ядерный двигатель. Чем это поможет, как это можно будет использовать? Для начала стоит уточнить, что в том виде, в котором ядерная двигательная установка существует сегодня, она может работать только в космическом пространстве. Взлетать с Земли и садиться в таком виде она не может никак, тут пока без традиционных химических ракет не обойтись.

А зачем в космосе? Ну слетает человечество до Марса и Луны быстро, и всё? Не совсем так. В настоящее время все проекты орбитальных заводов и фабрик, работающих на орбите Земли, стопорятся из-за отсутствия сырья для работы. Нет смысла строить что-либо в космосе до тех пор, пока не найден способ выводить на орбиту большое количество требуемого сырья, например металлической руды.

Но зачем поднимать их с Земли, если можно, наоборот, привезти из космоса. В том же поясе астероидов в Солнечной системе есть просто огромные запасы различных металлов, в том числе и драгоценных. И вот в таком случае создание ядерного буксира станет просто палочкой-выручалочкой.

Привезти на орбиту огромный платино- или золотосодержащий астероид и начать его разделывать прямо в космосе. По расчетам специалистов такая добыча с учетом объема может оказаться одной из наиболее выгодных.

А есть ли менее фантастическое применение ядерному буксиру? Например, с его помощью можно развозить по нужным орбитам спутники или привозить в нужную точку пространства космические аппараты, например на лунную орбиту. В настоящее время для этого используются разгонные блоки, например российский «Фрегат». Они дорогие, сложные и одноразовые. Ядерный буксир сможет подхватывать их на низкой околоземной орбите и доставлять куда необходимо.

Аналогично и с межпланетными путешествиями. Без быстрого способа доставлять грузы и людей на орбиту Марса шансов начать колонизацию просто нет. Ракеты-носители нынешнего поколения будут делать это очень дорого и долго. До сих пор длительность полета остается одной из самых серьезных проблем при полете к другим планетам. Выдержать месяцы полета на Марс и обратно в закрытой капсуле космического корабля - задача не из простых. Ядерный буксир сможет помочь и тут, существенно сократив это время.

Необходимо и достаточно

В настоящее время всё это выглядит фантастикой, но до тестирования прототипа, как утверждают ученые, остаются считаные годы. Главное, что требуется, это не только завершить разработку, но и сохранить в стране необходимый уровень космонавтики. Даже при падении финансирования должны продолжать взлетать ракеты, строиться космические аппараты, работать ценнейшие специалисты.

Иначе один атомный двигатель без соответствующей инфраструктуры делу не поможет, для максимальной эффективности разработку будет очень важно не просто продать, но использовать самостоятельно, показав все возможности нового космического транспортного средства.

Пока же всем жителям страны, не завязанным на работе, остается только посматривать на небо и надеяться, что у российской космонавтики всё получится. И ядерный буксир, и сохранение нынешних возможностей. В другие исходы и верить не хочется.

Скептики утверждают, что создание ядерного двигателя - это не значительный прогресс в области науки и техники, а лишь «модернизация парового котла», где вместо угля и дров в качестве топлива выступает уран, а в качестве рабочего тела - водород. Настолько ли бесперспективен ЯРД (ядерный реактивный двигатель)? Попробуем разобраться.

Первые ракеты

Все заслуги человечества в освоении околоземного космического пространства можно смело отнести на счет химических реактивных двигателей. В основе работы таких силовых агрегатов - преобразование энергии химической реакции сжигания топлива в окислителе в кинетическую энергию реактивной струи, и, следовательно, ракеты. В качестве топлива используются керосин, жидкий водород, гептан (для жидкотопливных ракетных двигателей (ЖТРД)) и полимеризованная смесь перхлората аммония, алюминия и оксида железа (для твердотопливных (РДТТ)).

Общеизвестно, что первые ракеты, используемые для фейерверков, появились в Китае еще во втором столетии до нашей эры. В небо они поднимались благодаря энергии пороховых газов. Теоретические изыскания немецкого оружейника Конрада Хааса (1556), польского генерала Казимира Семеновича (1650), русского генерал-лейтенанта Александра Засядко внесли существенный вклад в развитие ракетной техники.

Патент на изобретение первой ракеты с ЖТРД получил американский ученый Роберт Годдард. Его аппарат при весе 5 кг и длине около 3 м, работавший на бензине и жидком кислороде, в 1926 году за 2,5 с. пролетел 56 метров.

В погоне за скоростью

Серьезные экспериментальные работы по созданию серийных химических реактивных двигателей стартовали в 30-х годах прошлого века. В Советском Союзе пионерами ракетного двигателестроения по праву считаются В. П. Глушко и Ф. А. Цандер. С их участием были разработаны силовые агрегаты РД-107 и РД-108, обеспечившие СССР первенство в освоении космического пространства и заложившие фундамент для будущего лидерства России в области пилотируемой космонавтики.

При модернизации ЖТРД стало ясно, что теоретическая максимальная скорость реактивной струи не сможет превысить 5 км/с. Для изучения околоземного пространства этого может быть и достаточно, но вот полеты к другим планетам, а тем более звездам останутся для человечества несбыточной мечтой. Как следствие, уже в середине прошлого века стали появляться проекты альтернативных (нехимических) ракетных двигателей. Наиболее популярными и перспективными выглядели установки, использующие энергию ядерных реакций. Первые экспериментальные образцы ядерных космических двигателей (ЯРД) в Советском Союзе и США прошли тестовые испытания еще в 1970 году. Однако после Чернобыльской катастрофы под нажимом общественности работы в этой области были приостановлены (в СССР в 1988 году, в США - с 1994).

В основе функционирования ядерных силовых установок лежат те же принципы, что и у термохимических. Различие заключается лишь в том, что нагрев рабочего тела осуществляется энергией распада или синтеза ядерного горючего. Энергетическая эффективность таких двигателей значительно превосходит химические. Так например, энергия, которую может выделить 1 кг самого лучшего топлива (смесь бериллия с кислородом) - 3×107 Дж, тогда как для изотопов полония Po210 эта величина составляет 5×1011 Дж.

Высвобождаемая энергия в ядерном двигателе может использоваться различными способами:

нагревая рабочее тело, испускаемое через сопла, как в традиционном ЖРД,после преобразования в электрическую, ионизируя и разгоняя частицы рабочего тела,создания импульса непосредственно продуктами деления или синтеза.В качестве рабочего тела может выступать даже обычная вода, но гораздо эффективнее будет применение спирта, аммиака или жидкого водорода. В зависимости от агрегатного состояния топлива для реактора ядерные двигатели ракет подразделяют на твердо-, жидко- и газофазные. Наиболее проработан ЯРД с твердофазным реактором деления, использующий в качестве топлива ТВЭЛы (тепловыделяющие элементы), применяемые на атомных электростанциях. Первый такой двигатель в рамках американского проекта Nerva прошел наземные тестовые испытания в 1966 году, проработав около двух часов.

Конструктивные особенности

В основе любого ядерного космического двигателя лежит реактор, состоящий из активной зоны и бериллиевого отражателя, размещенных в силовом корпусе. В активной зоне и происходит деление атомов горючего вещества, как правило, урана U238, обогащенного изотопами U235. Для придания процессу распада ядер определенных свойств, здесь же расположены и замедлители - тугоплавкие вольфрам или молибден. В случае если замедлитель включают в состав ТВЭЛов, реактор называют гомогенным, а если размещают отдельно - гетерогенным. В состав ядерного двигателя также входят блок подачи рабочего тела, органы управления, теневая радиационная защита, сопло. Конструктивные элементы и узлы реактора, испытывающие высокие термические нагрузки, охлаждаются рабочим телом, которое затем турбонасосным агрегатом нагнетается в тепловыделяющие сборки. Здесь происходит его нагрев почти до 3 000˚С. Истекая через сопло, рабочее тело создает реактивную тягу.

Типичными органами управления реактором служат регулирующие стержни и поворотные барабаны, выполненные из вещества, поглощающего нейтроны (бора или кадмия). Стержни размещают непосредственно в активной зоне или в специальных нишах отражателя, а поворотные барабаны - на периферии реактора. Перемещением стержней или поворотом барабанов изменяют количество делящихся ядер в единицу времени, регулируя уровень энерговыделения реактора, и, следовательно, его тепловую мощность.

Для снижения интенсивности нейтронного и гамма-излучения, опасного для всего живого, в силовом корпусе размещают элементы первичной реакторной защиты.

Повышение эффективности

Жидкофазный ядерный двигатель принципом работы и устройством аналогичен твердофазным, но жидкообразное состояние топлива позволяет увеличить температуру протекания реакции, а, следовательно, тягу силового агрегата. Так если для химических агрегатов (ЖТРД и РДТТ) максимальный удельный импульс (скорость истечения реактивной струи) - 5 420 м/с, для твердофазных ядерных и 10 000м/с - далеко не предел, то среднее значение этого показателя для газофазных ЯРД лежит в диапазоне 30 000 - 50 000 м/с.

Существуют проекты газофазного ядерного двигателя двух типов:

Открытого цикла, при котором ядерная реакция протекает внутри плазменного облака из рабочего тела, удерживаемого электромагнитным полем и поглощающего все образовавшееся тепло. Температура может достигать нескольких десятков тысяч градусов. В этом случае активную область окружает термостойкое вещество (например, кварц) - ядерная лампа, свободно пропускающая излучаемую энергию.В установках второго типа температура протекания реакции будет ограничена температурой плавления материала колбы. При этом энергетическая эффективность ядерного космического двигателя несколько снижается (удельный импульс до 15 000 м/с), но повышается экономичность и радиационная безопасность.

Практические достижения

Формально, изобретателем силовой установки на атомной энергии принято считать американского ученого и физика Ричарда Фейнмана. Старт масштабных работ по разработке и созданию ядерных двигателей для космических кораблей в рамках программы Rover был дан в научно-исследовательском центре Лос-Аламос (США) в 1955 году. Американские изобретатели отдали предпочтение установкам с гомогенным ядерным реактором. Первый экспериментальный образец «Киви-А» был собран на заводе при атомном центре в Альбукерке (Нью-Мексико, США) и испытан в 1959 году. Реактор располагался на стенде вертикально соплом вверх. В ходе испытаний нагретая струя отработанного водорода выбрасывалась непосредственно в атмосферу. И хотя ректор проработал на малой мощности всего лишь около 5 минут, успех вдохновил разработчиков.

В Советском Союзе мощный импульс подобным исследованиям придала состоявшаяся в 1959 году в Институте атомной энергии встреча «трех великих К» - создателя атомной бомбы И. В. Курчатова, главного теоретика отечественной космонавтики М. В. Келдыша и генерального конструктора советских ракет С. П. Королева. В отличие от американского образца советский двигатель РД-0410, разработанный в конструкторском бюро объединения «Химавтоматика» (Воронеж), имел гетерогенный реактор. Огневые испытания состоялись на полигоне вблизи г. Семипалатинска в 1978 году.

Стоит отметить, что теоретических проектов было создано довольно много, но до практической реализации дело так и не дошло. Причинами тому послужило наличие огромного количества проблем в материаловедении, нехватка человеческих и финансовых ресурсов.

Для заметки: важным практическим достижением стало проведение летных испытаний самолетов с ядерным двигателем. В СССР наиболее перспективным был экспериментальный стратегический бомбардировщик Ту-95ЛАЛ, в США - В-36.

Проект "Орион" или импульсные ЯРД

Для полетов в космосе ядерный двигатель импульсного действия впервые предложил использовать в 1945 году американский математик польского происхождения Станислав Улам. В последующее десятилетие идею развили и доработали Т. Тейлор и Ф. Дайсон. Суть сводится к тому, что энергия небольших ядерных зарядов, подрываемых на некотором расстоянии от толкающей платформы на днище ракеты, сообщает ей большое ускорение.

В ходе стартовавшего в 1958 году проекта «Орион» именно таким двигателем планировалось оснастить ракету, способную доставить людей на поверхность Марса или орбиту Юпитера. Экипаж, размещенный в носовом отсеке, был бы защищен от разрушительных воздействий гигантских ускорений демпфирующим устройством. Результатом детальной инженерной проработки стали маршевые испытания масштабного макета корабля для изучения устойчивости полета (вместо ядерных зарядов использовалась обычная взрывчатка). Из-за дороговизны проект был закрыт в 1965 году.

Схожие идеи создания «взрыволета» высказывал и советский академик А. Сахаров в июле 1961 года. Для вывода корабля на орбиту ученый предлагал использовать обычные ЖТРД.

Альтернативные проекты

Огромное количество проектов так и не вышли за рамки теоретических изысканий. Среди них было немало оригинальных и очень перспективных. Подтверждением служит идея силовой ядерной установки на делящихся фрагментах. Конструктивные особенности и устройство этого двигателя позволяют обходиться вообще без рабочего тела. Реактивная струя, обеспечивающая необходимые тяговые характеристики, формируется из отработанного ядерного материала. В основе реактора лежат вращающиеся диски с подкритической ядерной массой (коэффициент деления атомов меньше единицы). При вращении в секторе диска, находящегося в активной зоне, запускается цепная реакция и распадающиеся высокоэнергетические атомы направляются в сопло двигателя, образуя реактивную струю. Сохранившиеся целые атомы примут участие в реакции при следующих оборотах топливного диска.

Вполне работоспособны проекты ядерного двигателя для кораблей, выполняющих определенные задачи в околоземном пространстве, на базе РИТЭГов (радиоизотопных термоэлектрических генераторов), но для осуществления межпланетных, а тем более межзвездных перелетов такие установки малоперспективны.

Огромный потенциал у двигателей, работающих на ядерном синтезе. Уже на сегодняшнем этапе развития науки и техники вполне реализуема импульсная установка, в которой, подобно проекту «Орион», под днищем ракеты будут подрываться термоядерные заряды. Впрочем, и осуществление управляемого ядерного синтеза многие специалисты считают делом недалекого будущего.

Достоинства и недостатки ЯРД

К бесспорным преимуществам использования ядерных двигателей в качестве силовых агрегатов для космических летательных аппаратов следует отнести их высокую энергетическую эффективность, обеспечивающую высокий удельный импульс и хорошие тяговые показатели (до тысячи тонн в безвоздушном пространстве), внушительный энергозапас при автономной работе. Современный уровень научно-технического развития позволяет обеспечить сравнительную компактность такой установки.

Основной недостаток ЯРД, послуживший причиной сворачивания проектно-исследовательских работ - высокая радиационная опасность. Это особенно актуально при проведении наземных огневых тестов в результате которых возможно попадание в атмосферу вместе с рабочим телом и радиоактивных газов, соединений урана и его изотопов, и разрушающее воздействие проникающей радиации. По этим же причинам неприемлем старт космического корабля, оборудованного ядерным двигателем, непосредственно с поверхности Земли.

Настоящее и будущее

По заверениям академика РАН, генерального директора «Центра Келдыша» Анатолия Коротеева, принципиально новый тип ядерного двигателя в России будет создан уже в ближайшее время. Суть подхода заключается в том, энергия космического реактора будет направлена не на непосредственный нагрев рабочего тела и формирования реактивной струи, а для производства электричества. Роль движителя в установке отводится плазменному двигателю, удельная тяга которого в 20 раз превышает тягу существующих на сегодняшний день химических реактивных аппаратов. Головным предприятием проекта выступает подразделение госкорпорации «Росатом» АО «НИКИЭТ» (Москва).

Полномасштабные макетные тесты были успешно пройдены еще в 2015 году на базе НПО «Машиностроения» (Реутов). Датой начала летно-конструкторских испытаний ядерной энергоустановки назван ноябрь нынешнего года. Важнейшие элементы и системы должны будут пройти проверку, в том числе и на борту МКС.

Функционирование нового российского ядерного двигателя происходит по замкнутому циклу, что полностью исключает попадание радиоактивных веществ в окружающее пространство. Массовые и габаритные характеристики основных элементов энергетической установки обеспечивают ее использование с существующими отечественными ракето-носителями «Протон» и «Ангара».

Александр Лосев

Быстрое развитие ракетно-космической техники в XX веке было обусловлено военно-стратегическими, политическими и, в определенной степени, идеологическими целями и интересами двух сверхдержав - СССР и США, а все государственные космические программы являлись продолжением их военных проектов, где главной задачей была необходимость обеспечить обороноспособность и стратегический паритет с вероятным противником. Стоимость создания техники и затраты на эксплуатацию тогда не имели принципиального значения. На создание ракет-носителей и космических аппаратов выделялись колоссальные ресурсы, а 108 минут полета Юрия Гагарина в 1961 году и телетрансляция Нила Армстронга и Базза Олдрина с поверхности Луны в 1969 году были не просто триумфами научно-технической мысли, они еще рассматривались как стратегические победы в битвах «Холодной войны».

Но после того как Советский Союз распался и выбыл из гонки за мировое лидерство, у его геополитических противников, прежде всего у США, исчезла необходимость реализовывать престижные, но крайне затратные космические проекты, чтобы доказывать всему миру превосходство западной экономической системы и идеологических концепций.
В 90-х годах основные политические задачи прошлых лет утратили актуальность, блоковое противостояние сменилось глобализацией, в мире возобладал прагматизм, поэтому большинство космических программ было свернуто или отложено, от масштабных проектов прошлого осталась, как наследие, только МКС. К тому же западная демократия поставила все дорогостоящие государственные программы в зависимость от электоральных циклов.
Поддержка избирателей, необходимая для получения или сохранения власти, заставляет политиков, парламенты и правительства склоняться к популизму и решать сиюминутные задачи, поэтому траты на исследования космоса сокращаются год от года.
Большинство фундаментальных открытий было сделано еще в первой половине ХХ века, а в наши дни наука и технологии достигли определенных пределов, к тому же во всем мире снизилась популярность научных знаний, и ухудшилось качество преподавания математики, физики и других естественных наук. Это и стало причиной застоя, в том числе и в космической сфере, последних двух десятилетий.
Но сейчас становится очевидным, что мир приближается к концу очередного технологического цикла, основанного на открытиях прошлого века. Поэтому любая держава, которая будет обладать принципиально новыми перспективными технологиями в момент смены глобального технологического уклада, автоматически обеспечит себе мировое лидерство как минимум на следующие пятьдесят лет.

Принципиальное устройство ЯРД с водородом в качестве рабочего тела

Это осознают и в Соединенных Штатах, где взят курс на возрождение американского величия во всех сферах деятельности, и в Китае, бросающем вызов американской гегемонии, и в Евросоюзе, который всеми силами пытается сохранить свой вес в глобальной экономике.
Там существует промышленная политика и всерьез занимаются развитием собственного научно-технического и производственного потенциала, а космическая сфера может стать наилучшим полигоном для отработки новых технологий и для доказательства или опровержения научных гипотез, способных заложить основу для создания принципиально иной более совершенной техники будущего.
И вполне естественно ожидать, что США будет первой страной, где возобновятся проекты исследования дальнего космоса с целью создания уникальных инновационных технологий как в области вооружений, транспорта и конструкционных материалов, так и в биомедицине и в сфере телекоммуникаций
Правда, ни даже Соединенным Штатам, успех на пути создания революционных технологий не гарантирован. Есть высокий риск оказаться в тупике, совершенствуя ракетные двигатели полувековой давности на основе химического топлива, как это делает компания SpaceX Илона Маска, или, создавая системы жизнеобеспечения длительного перелета похожие на те, что уже реализованы на МКС.
Может ли Россия, чья стагнация в космической сфере с каждым годом становится заметнее, совершить рывок в гонке за будущее технологическое лидерство, чтобы оставаться в клубе сверхдержав, а не в списке развивающихся стран?
Да, безусловно, Россия может, и более того, заметный шаг вперед уже сделан в ядерной энергетике и в технологиях ядерных ракетных двигателей, несмотря на хроническое недофинансирование космической отрасли.
Будущее космонавтики - это использование ядерной энергии. Чтобы понять, как связаны ядерные технологии и космос, необходимо рассмотреть основные принципы реактивного движения.
Итак, основные типы современных космических двигателей созданы на принципах химической энергетики. Это твердотопливные ускорители и жидкостные ракетные двигатели, в их камерах сгорания компоненты топлива (горючее и окислитель) вступая в экзотермическую физико-химическую реакцию горения, формируют реактивную струю, ежесекундно выбрасывающую из сопла двигателя тонны вещества. Кинетическая энергия рабочего тела струи преобразуется в реактивную силу, достаточную для движения ракеты. Удельный импульс (отношение создаваемой тяги к массе используемого топлива) таких химических двигателей зависит от компонентов топлива, давления и температуры в камере сгорания, а также от молекулярной массы газообразной смеси, выбрасываемой через сопло двигателя.
И чем выше температура вещества и давление внутри камеры сгорания, и чем ниже молекулярная масса газа, тем выше удельный импульс, а значит и эффективность двигателя. Удельный импульс - это количество движения, и его принято измерять в метрах в секунду, также как и скорость.
В химических двигателях наибольший удельный импульс дают топливные смеси кислород-водород и фтор-водород (4500–4700 м/с), но самыми популярными (и удобными в эксплуатации) стали ракетные двигатели, работающие на керосине и кислороде, например двигатели «Союзов» и ракет «Falcon» Маска, а также двигатели на несимметричном диметилгидразине (НДМГ) с окислителем в виде смеси тетраоксида азота и азотной кислоты (советский и российский «Протон», французский «Ариан», американский «Титан»). Их эффективность в 1.5 раза ниже, чем у двигателей на водородном топливе, но и импульса в 3000 м/с и мощности вполне достаточно, для того, чтобы было экономически выгодно выводить тонны полезной нагрузки на околоземные орбиты.
Но полеты к другим планетам требуют намного большего размера космических кораблей, чем все, что были созданы человечеством ранее, включая модульную МКС. В этих кораблях необходимо обеспечивать и длительное автономное существование экипажей, и определенный запас топлива и ресурс работы маршевых двигателей и двигателей для маневров и коррекции орбит, предусмотреть доставку космонавтов в специальном посадочном модуле на поверхность иной планеты, и возврат их на основной транспортный корабль, а затем и возвращение экспедиции на Землю.
Накопленные инженерно-технические знания и химическая энергетика двигателей позволяют вернуться на Луну и достигнуть Марса, поэтому велика вероятность, что в следующем десятилетии человечество побывает на Красной планете.
Если опираться только на имеющиеся космические технологии, то минимальная масса обитаемого модуля для пилотируемого полета к Марсу или к спутникам Юпитера и Сатурна составит примерно 90 тонн, что в 3 раза больше, чем лунные корабли начала 1970-х, а значит, ракеты-носители для их выведения на опорные орбиты для дальнейшего полета к Марсу будут намного превосходить «Сатурн-5» (стартовая масса 2965 тонн) лунного проекта «Аполлон» или советский носитель «Энергия» (стартовая масса 2400 тонн). Потребуется создать на орбите межпланетный комплекс массой до 500 тонн. Полет на межпланетном корабле с химическими ракетными двигателями потребует от 8 месяцев до 1 года времени только в одну сторону, потому что придется делать гравитационные маневры, используя для дополнительного разгона корабля силу притяжения планет, и колоссального запаса топлива.
Но используя химическую энергию ракетных двигателей дальше орбиты Марса или Венеры человечество не улетит. Нужны другие скорости полета космических кораблей и иная более мощная энергетика движения.

Современный проект ядерного ракетного двигателя Princeton Satellite Systems

Для освоения дальнего космоса необходимо значительно повысить тяговооруженность и эффективность ракетного двигателя, а значит увеличить его удельный импульс и ресурс работы. А для этого необходимо внутри камеры двигателя нагреть газ или вещество рабочего тела с низкой атомной массой до температур, в несколько раз превосходящих температуру химического горения традиционных топливных смесей, и сделать это можно с помощью ядерной реакции.
Если вместо обычной камеры сгорания внутрь ракетного двигателя поместить ядерный реактор, в активную зону которого будет подаваться вещество в жидком или газообразном виде, то оно, разогреваясь под большим давлением до нескольких тысяч градусов, начнет выбрасываться через канал сопла, создавая реактивную тягу. Удельный импульс такого ядерного реактивного двигателя будет в несколько раз больше, чем у обычного на химических компонентах, а значит многократно увеличится эффективность как самого двигателя, так и ракеты-носителя в целом. Окислитель для горения топлива при этом не потребуется, а в качестве вещества, создающего реактивную тягу, может быть использован легкий газ водород, мы же знаем, что чем меньше молекулярная масса газа, тем выше импульс, а это позволит намного уменьшить массу ракеты при лучших характеристиках мощности двигателя.
Ядерный двигатель будет лучше обычного, поскольку в зоне реактора легкий газ может нагреваться до температур, превышающих 9 тысяч градусов Кельвина, и струя такого перегретого газа обеспечит намного больший удельный импульс, чем могут дать обычные химические двигатели. Но это в теории.
Опасность даже не в том, что при старте ракеты-носителя с такой ядерной установкой может произойти радиоактивное загрязнение атмосферы и пространства вокруг пусковой площадки, основная проблема, что при высоких температурах может расплавиться сам двигатель вместе с космическим кораблем. Конструкторы и инженеры это понимают и уже несколько десятилетий пытаются найти подходящие решения.
У ядерных ракетных двигателей (ЯРД) есть уже своя история создания и эксплуатации в космосе. Первые разработки ядерных двигателей начались в середине 1950-х годов, то есть еще до полета человека в космос, и практически одновременно и в СССР и в США, а сама идея использовать ядерные реакторы для нагрева рабочего вещества в ракетном двигателе родилась вместе с первыми ректорами в середине 40-х годов, то есть больше 70 лет назад.
В нашей стране инициатором создания ЯРД стал ученый-теплофизик Виталий Михайлович Иевлев. В 1947 году он представил проект, который был поддержан С. П. Королевым, И. В. Курчатовым и М. В. Келдышем. Изначально планировалось использовать такие двигатели для крылатых ракет, а затем ставить и на баллистические ракеты. Разработкой занялись ведущие оборонные КБ Советского Союза, а также научно-исследовательские институты НИИТП, ЦИАМ, ИАЭ, ВНИИНМ.
Советский ядерный двигатель РД-0410 был собран в середине 60-х воронежском «Конструкторском бюро химавтоматики», где создавалось большинство жидкостных ракетных двигателей для космической техники.
В качестве рабочего тела в РД-0410 использовался водород, который в жидком виде проходил через «рубашку охлаждения», отводя лишнее тепло от стенок сопла и не давая ему расплавиться, а затем поступал в активную зону реактора, где нагревался до 3000К и выбрасывался через канал сопла, преобразуя, таким образом, тепловую энергию в кинетическую и создавая удельный импульс в 9100 м/с.
В США проект ЯРД был запущен в 1952 году, а первый действующий двигатель был создан в 1966 году и получил название NERVA (Nuclear Engine for Rocket Vehicle Application). В 60-х - 70-х годах Советский Союз и США старались не уступать друг другу.
Правда и наш РД-0410, и американский NERVA были твердофазными ЯРД, (ядерное топливо на основе карбидов урана находилось в реакторе в твердом состоянии), и их рабочая температура была в пределах 2300–3100К.
Чтобы увеличить температуру активной зоны без риска взрыва или расплавления стенок реактора, необходимо создать такие условия ядерной реакции, при которых топливо (уран) переходит в газообразное состояние или превращается в плазму и удерживается внутри реактора за счет сильного магнитного поля, не касаясь при этом стенок. А дальше водород, поступающий в активную зону реактора, «обтекает» находящийся в газовой фазе уран, и превращаясь в плазму, с очень высокой скоростью выбрасывается через канал сопла.
Этот тип двигателя получил название газофазного ЯРД. Температуры газообразного уранового топлива в таких ядерных двигателях могут находиться в диапазоне от 10 тысяч до 20 тысяч градусов Кельвина, а удельный импульс достигать 50000 м/с, что в 11 раз выше, чем у самых эффективных химических ракетных двигателей.
Создание и использование в космической технике газофазных ЯРД открытого и закрытого типов - это наиболее перспективное направление развития космических ракетных двигателей и именно то, что необходимо человечеству для освоения планет Солнечной системы и их спутников.
Первые исследования по проекту газофазного ЯРД начались в СССР в 1957 году в НИИ тепловых процессов (НИЦ имени М. В. Келдыша), а само решение о разработке ядерных космических энергоустановок на основе газофазных ядерных реакторов было принято в 1963 году академиком В. П. Глушко (НПО Энергомаш), а затем утверждено постановлением ЦК КПСС и Совета министров СССР.
Разработка газофазного ЯРД велась в Советском Союзе два десятилетия, но, к сожалению, так и не была завершена из-за недостаточного финансирования и необходимости дополнительных фундаментальных исследований в области термодинамики ядерного горючего и водородной плазмы, нейтронной физики и магнитной гидродинамики.
Советские ученые-ядерщики и инженеры-конструкторы столкнулись с рядом проблем, таких как достижение критичности и обеспечение устойчивости работы газофазного ядерного реактора, снижение потерь расплавленного урана при выбросе водорода, разогретого до нескольких тысяч градусов, теплозащита сопла и генератора магнитного поля, накопление продуктов деления урана, выбор химически стойких конструкционных материалов и пр.
А когда для советской программы «Марс-94» первого пилотируемого полета на Марс начала создаваться ракета-носитель «Энергия», проект ядерного двигателя был отложен на неопределенный срок. Советскому Союзу не хватило совсем немного времени, а главное политической воли и эффективности экономики, чтобы осуществить высадку наших космонавтов на планету Марс в 1994 году. Это было бы бесспорным достижением и доказательством нашего лидерства в высоких технологиях в течение следующих нескольких десятилетий. Но космос, как и многое другое, был предан последним руководством СССР. Историю уже не изменить, ушедших ученых и инженеров не вернуть, а утраченные знания не восстановить. Очень многое придется создавать заново.
Но космическая ядерная энергетика не ограничивается только сферой твердо- и газофазных ЯРД. Для создания нагретого потока вещества в реактивном двигателе можно использовать электрическую энергию. Эту идею первым высказал Константин Эдуардович Циолковский еще в 1903 году в своей работе «Исследование мировых пространств реактивными приборами».
А первый электротермический ракетный двигатель в СССР был создан в 1930-х годах Валентином Петровичем Глушко - будущим академиком АН СССР и руководителем НПО «Энергия».
Принципы работы электрические ракетных двигателей могут быть различными. Обычно их принято делить на четыре типа:

  • электротермические (нагревные или электродуговые). В них газ нагревается до температур 1000–5000К и выбрасывается из сопла точно также как и в ЯРД.
  • электростатические двигатели (коллоидные и ионные), в которых сначала происходит ионизация рабочего вещества, а затем положительные ионы (атомы, лишенные электронов) ускоряются в электростатическом поле и также выбрасываются через канал сопла, создавая реактивную тягу. К электростатическим относятся также и стационарные плазменные двигатели.
  • магнитоплазменные и магнитодинамические ракетные двигатели. Там газовая плазма ускоряется за счет силы Ампера в пересекающихся перпендикулярно магнитном и электрическом полях.
  • импульсные ракетные двигатели, в которых используется энергия газов, возникающих при испарении рабочего тела в электрическом разряде.

Плюсом этих электрических ракетных двигателей является низкий расход рабочего тела, КПД до 60% и высокая скорость потока частиц, что позволяет значительно сократить массу космического аппарата, но есть и минус - малая плотность тяги, а соответственно низкая мощность, а также дороговизна рабочего тела (инертные газы или пары щелочных металлов) для создания плазмы.
Все перечисленные типы электродвигателей реализованы на практике и многократно использовались в космосе и на советских и на американских аппаратах начиная с середины 60-х годов, но из-за своей малой мощности применялись в основном в качестве двигателей коррекции орбит.
С 1968 по 1988 годы в СССР была запущена целая серия спутников «Космос» с ядерными установками на борту. Типы реакторов носили названия: «Бук», «Топаз» и «Енисей».
Реактор проекта «Енисей» обладал тепловой мощностью до 135 кВт и электрической мощностью порядка 5 кВт. Теплоносителем являлся натрий-калиевый расплав. Этот проект был закрыт в 1996 году.
Для настоящего маршевого ракетного электродвигателя требуется очень мощный источник энергии. И лучшим источником энергии для таких космических двигателей является ядерный реактор.
Ядерная энергетика - одна из высокотехнологичных отраслей, где наша страна сохраняет лидирующие позиции. И принципиально новый ракетный двигатель в России уже создается и этот проект близок к успешному завершению в 2018 году. Летные испытания намечена на 2020 год.
И если газофазный ЯРД - это тема будущих десятилетий к которой предстоит вернуться после проведения фундаментальных исследований, то его сегодняшняя альтернатива - это ядерная энергодвигательная установка мегаваттного класса (ЯЭДУ), и она уже создается предприятиями Росатома и Роскосмоса с 2009 года.
В создании ядерного энергодвигателя и транспортно-энергетического модуля принимают участие НПО «Красная звезда», которое на сегодняшний день является единственным в мире разработчиком и изготовителем космических ядерных энергетических установок, а также Исследовательский центр им. М. В. Келдыша, НИКИЭТ им. Н. А. Доллежаля, «НИИ НПО «Луч», «Курчатовский институт», ИРМ, ФЭИ, НИИАР и НПО Машиностроения.
Ядерная энергодвигательная установка включает в себя высокотемпературный газоохлаждаемый ядерный реактор на быстрых нейтронах с системой турбомашинного преобразования тепловой энергии в электрическую, систему холодильников-излучателей для отвода избыточного тепла в космос, приборно-агрегатный отсек, блок маршевых плазменных или ионных электродвигателей и контейнер для размещения полезной нагрузки.
В энергодвигательной установке ядерный реактор служит источником электроэнергии для работы электрических плазменных двигателей, при этом газовый теплоноситель реактора, проходящий через активную зону, попадает в турбину электрогенератора и компрессора и возвращается обратно в реактор по замкнутому контуру, а не выбрасывается в пространство как в ЯРД, что делает конструкцию более надежной и безопасной, а значит пригодной для пилотируемой космонавтики.
Планируется, что ядерная энергодвигательная установка будет применяться для многоразового космического буксира для обеспечения доставки грузов при освоении Луны или создания многоцелевых орбитальных комплексов. Плюсом будет являться не только многоразовое использование элементов транспортной системы (чего пытается добиться Илон Маск в своих космических проектах SpaceX), но и возможность доставки в три раза большей массы грузов, чем на ракетах с химическими реактивными двигателями сопоставимой мощности за счет уменьшения стартовой массы транспортной системы. Особая конструкция установки делает ее безопасной для людей и окружающей среды на Земле.
В 2014 году на ОАО «Машиностроительный завод» в г. Электросталь был собран первый тепловыделяющий элемент (твэл) штатной конструкции для этой ядерной электродвигательной установки, а в 2016 проведены испытания имитатора корзины активной зоны реактора.
Сейчас (в 2017 году) ведутся работы по изготовлению элементов конструкции установки и тестирование узлов и агрегатов на макетах, а также автономные испытания систем турбомашинного преобразования энергии и прототипов энергоблоков. Завершение работ запланировано на конец следующего 2018 года, правда, с 2015 года начало накапливаться отставание от графика.
Итак, как только эта установка будет создана, Россия станет первой в мире страной обладающей ядерными космическими технологиями, которые лягут в основу не только будущих проектов освоения Солнечной системы, но и земной и внеземной энергетики. Космические ядерные энергетические установки можно будет использовать для создания систем дистанционной передачи электроэнергии на Землю или на космические модули с помощью электромагнитного излучения. И это тоже станет передовой технологией будущего, где наша страна будет иметь лидирующие позиции.
На основе разрабатываемых плазменных электродвигателей будут созданы мощные двигательные установки для дальних полетов человека в космос и в первую очередь для освоения Марса, достичь орбиты которого можно будет всего за 1,5 месяца, а не за год с лишним, как при использовании обычных химических реактивных двигателей.
А будущее всегда начинается с революции в энергетике. И никак иначе. Энергетика первична и именно величина энергопотребления влияет на технический прогресс, на обороноспособность и на качество жизни людей.

Экспериментальный плазменный ракетный двигатель NASA

Советский астрофизик Николай Кардашёв еще в 1964 году предложил шкалу развития цивилизаций. Согласно этой шкале уровень технологического развития цивилизаций зависит от количества энергии, которое население планеты использует для своих нужд. Так цивилизация I типа использует все доступные ресурсы, имеющиеся на планете; цивилизация II типа - получает энергию своей звезды, в системе которой находится; а цивилизация III типа пользуется доступной энергией своей галактики. Человечество пока не доросло до цивилизации I типа по этой шкале. Мы используем лишь 0.16% всего объема потенциального энергетического запаса планеты Земля. А значит, и России и всему миру есть куда расти, и эти ядерные технологии откроют нашей стране дорогу не только в космос, но и будущее экономическое процветание.
И, возможно, единственный вариант для России в научно-технической сфере - это совершить сейчас революционный прорыв в ядерных космических технологиях для того чтобы одним «прыжком» преодолеть многолетнее отставание от лидеров и оказаться сразу у истоков новой технологической революции в очередном цикле развития человеческой цивилизации. Такой уникальный шанс выпадает той или иной стране лишь один раз в несколько столетий.
К сожалению, Россия, не уделявшая в последние 25 лет должного внимания фундаментальным наукам и качеству высшего и среднего образования, рискует навсегда упустить этот шанс, если программа окажется свернутой, а на смену нынешним ученым и инженерам не придет новое поколение исследователей. Геополитические и технологические вызовы, с которыми столкнется Россия уже через 10–12 лет, будут очень серьезными, сопоставимыми с угрозами середины ХХ века. Чтобы сохранить суверенитет и целостность России в будущем уже сейчас необходимо срочно начинать подготовку специалистов, способных на эти вызовы отвечать и создавать что-то принципиально новое.
Есть лишь примерно 10 лет на то, чтобы превратить Россию в мировой интеллектуально-технологический центр, и без серьезного изменения качества образования это сделать невозможно. Для научно-технологического прорыва необходимо вернуть системе образования (и школьной и ВУЗовской) системность взглядов на картину мира, научную фундаментальность и мировоззренческую целостность.
А что касается нынешнего застоя в космической отрасли, то это не страшно. Физические принципы, на которых основаны современные космические технологии будут еще долго востребованы сектором обычных спутниковых услуг. Вспомним, что человечество использовало парус на протяжении 5.5 тысяч лет, а эпоха пара длилась почти 200 лет, и лишь в ХХ веке мир начал стремительно меняться, потому что произошла очередная научно-техническая революция, запустившая волну инноваций и смену технологических укладов, что в итоге изменило и мировую экономику и политику. Главное, оказаться у истоков этих изменений.

Россия была и сейчас остается лидером в области ядерной космической энергетики. Опыт проектирования, строительства, запуска и эксплуатации космических аппаратов, оснащенных ядерным источником электроэнергии, имеют такие организации, как РКК «Энергия» и «Роскосмос». Ядерный двигатель позволяет эксплуатировать летательные аппараты многие годы, многократно повышая их практическую пригодность.

Историческая летопись

В то же время доставка исследовательского аппарата на орбиты дальних планет Солнечной системы требует увеличения ресурса такой ядерной установки до 5-7 лет. Доказано, что комплекс с ЯЭРДУ мощностью порядка 1 МВт в составе исследовательского КА позволит обеспечить ускоренную доставку за 5-7 лет на орбиты искусственных спутников наиболее удаленных планет, планетоходов на поверхность естественных спутников этих планет и доставку на Землю грунта с комет, астероидов, Меркурия и спутников Юпитера и Сатурна.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Расчет грузооборота

Согласно проектным проработкам РКК «Энергия», при строительстве базы на поверхность Луны должны доставляться модули массой порядка 10 т, на орбиту Луны - до 30 т. Суммарный грузопоток с Земли при строительстве обитаемой лунной базы и посещаемой лунной орбитальной станции оценивается в 700-800 т, а годовой грузопоток для обеспечения функционирования и развития базы - 400-500 т.

Однако принцип работы ядерного двигателя не позволяет разогнать транспортник достаточно быстро. Из-за длительного времени транспортировки и, соответственно, значительного времени нахождения полезного груза в радиационных поясах Земли не все грузы могут быть доставлены с использованием буксиров с ядерным двигателем. Поэтому грузопоток, который может быть обеспечен на основе ЯЭРДУ, оценивается лишь в 100-300 т/год.

Экономическая эффективность

В качестве критерия экономической эффективности межорбитальной транспортной системы целесообразно использовать значение удельной стоимости транспортировки единицы массы полезного груза (ПГ) с поверхности Земли на целевую орбиту. РКК «Энергия» была разработана экономико-математическая модель, учитывающая основные составляющие затрат в транспортной системе:

  • на создание и выведение на орбиту модулей буксира;
  • на закупку рабочей ядерной установки;
  • эксплуатационные затраты, а также расходы на проведение НИОКР и возможные капитальные затраты.

Стоимостные показатели зависят от оптимальных параметров МБ. С использованием этой модели была исследована сравнительная экономическая эффективность применения многоразового буксира на основе ЯЭРДУ мощностью порядка 1 МВт и одноразового буксира на основе перспективных жидкостных в программе обеспечения доставки с Земли на орбиту Луны высотой 100 км полезного груза суммарной массой 100 т/год. При использовании одной и той же ракеты-носителя грузоподъемностью, равной грузоподъемности РН «Протон-М», и двухпусковой схемы построения транспортной системы удельная стоимость доставки единицы массы полезного груза с помощью буксира на основе ядерного двигателя будет в три раза ниже, чем при использовании одноразовых буксиров на основе ракет с жидкостными двигателями типа ДМ-3.

Вывод

Эффективный ядерный двигатель для космоса способствует решению экологических проблем Земли, полету человека к Марсу, созданию системы беспроводной передачи энергии в космосе, реализации с повышенной безопасностью захоронения в космосе особо опасных радиоактивных отходов наземной атомной энергетики, созданию обитаемой лунной базы и началу промышленного освоения Луны, обеспечению защиты Земли от астероидно-кометной опасности.