Внутренняя баллистика оружия. Внутренняя баллистика, выстрел и его периоды

Выстрелом называется выбрасывание пули (гранаты, снаряды) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику, и гильза, плотно прижимаясь к патроннику, препятствует прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей, при встрече с воздухом порождают пламя и ударную волну; последняя является источником звука при выстреле.

При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола (автомат и пулеметы Калашникова, снайперская винтовка Драгунова), часть пороховых газов, кроме того, после прохождения пулей газоотводного отверстия устремляется через него в газовую камеру, ударяет в поршень и отбрасывает поршень с затворной рамой (толкатель с затвором) назад.

Пока затворная рама не пройдет определенное расстояние, обеспечивающее вылет пули из канала ствола, затвор продолжает запирать канал ствола. После вылета пули из канала ствола происходит его отпирание; затворная рама и затвор, двигаясь назад, сжимают возвратную пружину; затвор при этом извлекает из патронника гильзу. При движении вперед под действием сжатой пружины затвор досылает очередной патрон в патронник и вновь запирает канал ствола.

При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии отдачи (пистолет Макарова, автоматический пистолет Стечкина) давление газов через дно гильзы передается на затвор и вызывает движение затвора с гильзой назад. Это движение начинается в момент, когда давление пороховых газов на дно гильзы преодолевает инерцию затвора и усилие возвратно-боевой пружины. Пуля к этому времени уже вылетает из канала ствола. Отходя назад, затвор сжимает возвратно-боевую пружину, затем под действием энергии сжатой пружины затвор движется вперед и досылает очередной патрон в патронник.


В некоторых образцах оружия (крупнокалиберный пулемет Владимирова, станковый пулемет обр. 1910 г.) под действием давления пороховых газов на дно гильзы вначале движется назад ствол вместе со сцепленным с ним затвором. Пройдя некоторое расстояние, обеспечивающее вылет пули из канала ствола, ствол и затвор расцепляются, после чего затвор по инерции отходит в крайнее заднее положение и сжимает возвратную пружину, а ствол под действием пружины возвращается в переднее положение.

Иногда после удара бойка по капсюлю выстрела не последует или он произойдет с некоторым запозданием. В первом случае имеет место осечка, а во втором – затяжной выстрел. Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Поэтому необходимо оберегать боеприпасы от влаги и содержать оружие в исправном состоянии.

Затяжной выстрел является следствием медленного развития процесса зажжения или воспламенения порохового заряда. Поэтому после осечки не следует сразу открывать затвор, так как возможет затяжной выстрел. Если осечка произойдет при стрельбе из станкового гранатомета, то перед его разряжением необходимо выждать не менее одной минуты.

При сгорании порохового заряда примерно 25-35 % выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25% энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001-06 сек.). При выстреле различают четыре последовательных периода: предварительный; первый или основной; второй; период последействия газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования. Оно достигает 250-500 кг/см.кв. в зависимости от устройства нарезов, веса пули и твердости ее оболочки (например, у стрелкового оружия под патрон обр. 1943 г. давление форсирования равно 300 кг/см. кв.). Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем за пульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины (у стрелкового оружия 2800 кг/см, а под винтовочный патрон – 2900 кг/см). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем вследствие быстрого увеличения скорости движения пули объем за пульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно ¾ начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза – дульное давление – составляет у различных образцов оружия 300-900 кг/см. У самозарядного карабина Симонова – 390 кг/см, у станкового пулемета Горюнова – 570 кг/см. Скорость пули в момент вылета из канала ствола несколько меньше начальной скорости.

У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Период последействия длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

Процессы которые происходят внутри канала ствола при выстреле из стрелкового оружия и движение пули в воздухе изучает - баллистика .

Баллистика делится на внешнюю и внутреннюю.

Внешняя баллистика – это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната, снаряд) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

При полете пули в воздухе она описывает кривую линию которая называется траектория.

Пуля при полете в воздухе подвергается действию двух сил:

а) силы тяжести;

б) силы сопротивления воздуха.

Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую линию.

Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами трением воздуха, образованием завихрений и образованием баллистической волны.

Частицы воздуха соприкасающиеся с движущейся пулей, вследствие внутреннего сцепления и сцепления (вязкости) с ее поверхностью создают трение и уменьшают скорость пули.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разностью давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

При скорости полета пули, большей скорости звука, от налегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Внутренняя баллистика – это наука занимающаяся изучением процессов, которые происходят при выстреле, и в особенности при движении пули по каналу ствола.

Представлены основные понятия: периоды выстрела, элементы траектории полёта пули, прямой выстрел и т.д.

Для того чтобы освоить технику стрельбы из любого оружия, необходимо знать ряд теоретических положений, без которых ни один стрелок не сможет показывать высоких результатов и его обучение будет малоэффективным.
Баллистика - наука о движении снарядов. В свою очередь, баллистику разделяют на две части: внутреннюю и внешнюю.

Внутренняя баллистика

Внутренняя баллистика изучает явления, происходящие в канале ствола во время выстрела, движение снаряда по каналу ствола, характер сопровождающих это явление термо- и аэродинамических зависимостей, как в канале ствола, так и за его пределами в период последействия пороховых газов.
Внутренняя баллистика решает вопросы наиболее рационального использования энергии порохового заряда во время выстрела с тем, чтобы снаряду заданного веса и калибра сообщить определенную начальную скорость (V0) при соблюдении прочности ствола. Это дает исходные данные для внешней баллистики и проектирования оружия.

Выстрелом называется выбрасывание пули (гранаты) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.
От удара бойка по капсюлю боевого патрона, посланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор.
В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад.
При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола - снайперская винтовка Драгунова, часть пороховых газов, кроме того, после прохождения через него в газовую камеру, ударяет в поршень и отбрасывает толкатель с затвором назад.
При сгорании порохового заряда примерно 25-35% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25 % энергии - на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижной части оружия, газообразной и не сгоревшей части пороха); около 40 % энергии не используется и теряется после вылета пули из ствола канала.

Выстрел происходит в очень короткий промежуток времени (0,001-0,06с.). При выстреле различают четыре последовательных периода:

  • предварительный
  • первый, или основной
  • второй
  • третий, или период последних газов

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250 - 500 кг/см2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки. Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины - винтовочный патрон 2900 кг/см2. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4 - 6 см пути. Затем вследствие быстрого скорости движение пули объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится до момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза дульное давление составляет у различных образцов оружия 300 - 900 кг/см2. Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

Третий период, или период после действия газов длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200 - 2000 м/с, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

Начальная скорость пули и ее практическое значение

Начальной скоростью называется скорость движения пули у дульного среза ствола. За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.
Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет. Величина начальной скорости пули зависит от:

  • длины ствола
  • веса пули
  • веса, температуры и влажности порохового заряда
  • формы и размеров зерен пороха
  • плотности заряжания

Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.
Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули.
С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
Формы и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.
Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле (камеры сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.
Отдачей называется движение оружия назад во время выстрела. Отдача ощущается в виде толчка в плечо, руку или грунт. Действие отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.

Сила отдачи и сила сопротивления отдаче (упор приклада) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под воздействием которой дульная часть ствола оружия отклоняется кверху. Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил. Кроме того, при выстреле ствол оружия совершает колебательные движения - вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклоняться от первоначального положения в любую сторону (вверх, вниз, вправо, влево).
Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнения оружия и т.п.
Сочетание влияния вибрации ствола, отдачи оружия и других причин приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола. Этот угол называется углом вылета.
Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным - когда ниже. Влияние угла вылета на стрельбу устраняется при приведении его к нормальному бою. Однако при нарушении правил прикладки оружия, использовании упора, а также правил ухода за оружием и его сбережением, изменяется величина угла вылета и бой оружия. С целью уменьшения вредного влияния отдачи на результаты стрельбы применяются компенсаторы.
Итак, явления выстрела, начальная скорость пули, отдача оружия имеют большое значение при стрельбе и влияют на полет пули.

Внешняя баллистика

Это наука, изучающая движение пули после прекращения действия на нее пороховых газов. Основную задачу внешней баллистики составляет изучение свойств траектории и закономерностей полета пули. Внешняя баллистика дает данные для составления таблиц стрельбы, расчета шкал прицелов оружия, и выработки правил стрельбы. Выводы из внешней баллистики широко используются в бою при выборе прицела и точки прицеливания в зависимости от дальности стрельбы, направления и скорости ветра, температуры воздуха и других условий стрельбы.

Траектория полета пули и ее элементы. Свойства траектории. Виды траектории и их практическое значение

Траекторией называется кривая линия, описываемая центром тяжести пули в полете.
Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными. При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Элементы траектории

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории.
Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.
Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия.
Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.
Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения).
Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.
Угол бросания
Угол вылета - угол, заключенный между линией возвышения и линией бросания.
Точка падения - точка пересечения траектории с горизонтом оружия.
Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.
Полная горизонтальная дальность - расстояние от точки вылета до точки падения.
Окончательная скорость - скорость пули (гранаты) в точке падения.
Полное время полета - время движения пули (гранаты) от точки вылета до точки падения.
Вершина траектории - наивысшая точка траектории над горизонтом оружия.
Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.
Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории.
Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие.
Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания.
Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.
Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.
Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.
Линия цели - прямая, соединяющая точку вылета с целью.
Наклонная дальность - расстояние от точки вылета до цели по линии цели.
Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).
Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

Прямой выстрел, поражаемое и мертвое пространство наиболее близко соприкасаются с вопросами стрелковой практики. Основная задача изучения этих вопросов - получить твердые знания в использовании прямого выстрела и поражаемого пространства для выполнения огневых задач в бою.

Прямой выстрел его определение и практическое использование в боевой обстановке

Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении, называется прямым выстрелом. В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от высоты цели, настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела.
Дальность прямого выстрела может определяться по таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

Прямой снайперский выстрел в городских условиях
Высота установки оптических прицелов над каналом ствола оружия в среднем составляет 7 см. На дистанции 200 метров и прицеле "2" наибольшие превышения траектории, 5 см на дистанции 100 метров и 4 см - на 150 метров, практически совпадают с линией прицеливания - оптической осью оптического прицела. Высота линии прицеливания на середине дистанции 200 метров составляет 3,5 см. Происходит практическое совпадение траектории пули и линии прицеливания. Разницей в 1,5 см можно пренебречь. На дистанции 150 метров высота траектории 4 см, а высота оптической оси прицела над горизонтом оружия составляет 17-18 мм; разница по высоте составляет 3 см, что также не играет практической роли.

На расстоянии 80 метров от стрелка высота траектории пули будет 3 см, а высота прицельной линии - 5 см, та же самая разница в 2 см не имеет решающего значения. Пуля ляжет всего на 2 см ниже точки прицеливания. Вертикальный разброс пуль в 2 см настолько мал, что он принципиального значения не имеет. Поэтому, стреляя с делением "2" оптического прицела, начиная с 80 метров дистанции и до 200 метров, цельтесь противнику в переносицу - вы туда и попадете ±2/3 см выше ниже на всей этой дистанции. На 200 метров пуля попадет строго в точку прицеливания. И даже далее, на дистанции до 250 метров, цельтесь с тем же прицелом "2" противнику в "макушку", в верхний срез шапки - пуля после 200 метров дистанции резко понижается. На 250 метров, целясь таким образом, вы попадете ниже на 11 см - в лоб или переносицу.
Вышеописанный способ может пригодиться в уличных боях, когда расстояния в городе и есть примерно 150-250 метров и все делается быстро, на бегу.

Поражаемое пространство его определение и практическое использование в боевой обстановке

При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели, называется поражаемым пространством (глубиной поражаемого пространства).
Глубина поражаемого пространства зависит от высоты цели (она будет тем больше, чем выше цель), от настильности траектории (она будет тем больше, чем настильнее траектория) и от угла наклона местности (на переднем скате она уменьшается, на обратном скате - увеличивается).
Глубину поражаемого пространства можно определить по таблицам превышения траектории над линией прицеливания путем сравнения превышения нисходящей ветви траектории на соответствующую дальность стрельбы с высотой цели, а в том случае, если высота цели меньше 1/3 высоты траектории, то по форме тысячной.
Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с линией прицеливания. Прикрытое пространство его определение и практическое использование в боевой обстановке.

Прикрытое пространство его определение и практическое использование в боевой обстановке

Пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством.
Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория. Глубину прикрытого пространства можно определить по таблицам превышения траектории над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальность стрельбы. Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Мертвое пространство его определения и практическое использование в боевой обстановке

Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (не поражаемым) пространством.
Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство. Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины поражаемого пространства, прикрытого пространства, мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Явление деривации

Вследствие одновременного воздействия на пулю вращательного движения, придающего ей устойчивое положение в полете, и сопротивления воздуха, стремящегося опрокинуть пулю головной частью назад, ось пули отклоняется от направления полета в сторону вращения. В результате этого пуля встречает сопротивление воздуха больше одной своей стороной и поэтому отклоняется от плоскости стрельбы все больше и больше в сторону вращения. Такое отклонение вращающейся пули в сторону от плоскости стрельбы называется деривацией. Это довольно сложный физический процесс. Деривация возрастает непропорционально расстоянию полета пули, вследствие чего последняя забирает все больше и больше в сторону и ее траектория в плане представляет собой кривую линию. При правой нарезке ствола деривация уводит пулю в правую сторону, при левой - в левую.

Дистанция, м Деривация, см Тысячные
100 0 0
200 1 0
300 2 0,1
400 4 0,1
500 7 0,1
600 12 0,2
700 19 0,2
800 29 0,3
900 43 0,5
1000 62 0,6

На дистанциях стрельбы до 300 метров включительно деривация не имеет практического значения. Особенно это характерно для винтовки СВД, у которой оптический прицел ПСО-1 специально смещен влево на 1,5 см. Ствол при этом слегка развернут влево и пули слегка (на 1 см) уходят левее. Принципиального значения это не имеет. На дистанции 300 метров силой деривации пули возвращаются в точку прицеливания, то есть по центру. И уже на дистанции 400 метров пули начинают основательно уводиться вправо, поэтому, чтобы не крутить горизонтальный маховик, цельтесь противнику в левый (от вас) глаз. Деривацией пулю уведет на 3- 4 см вправо, и она попадет противнику в переносицу. На дистанции 500 метров цельтесь противнику в левую (от вас) сторону головы между глазом и ухом - это и будет приблизительно 6-7 см. На дистанции 600 метров - в левый (от вас) обрез головы противника. Деривация уведет пулю вправо на 11-12 см. На дистанции 700 метров возьмите видимый просвет между точкой прицеливания и левым краем головы, где-то над центром погона на плече противника. На 800 метров - дать поправку маховиком горизонтальных поправок на 0,3 тысячной (сетку подать вправо, среднюю точку попадания переместить влево), на 900 метров - 0,5 тысячной, на 1000 метров - 0,6 тысячной.

Рис. Устройство нарезного ствола

Патронник - предназначен для размещения патрона, соответствует форме и размерам гильзы.

Пульный вход - соединяет патронник и нарезную часть, служит для плавного врезания пули в нарезы.

Нарезная часть - имеет нарезы полного профиля и служит для придания пуле вращательного движения.

Направление нарезов может быть правое или левое (в отечественном оружие принято правое). Длина хода (шага) нарезов обеспечивает скорость вращательного движения пули. Длина нарезной части выбирается из условий получения необходимой начальной скорости пули. Количество нарезов зависит от калибра ствола и выбирается из условий давления оболочки пули на боевую грань нарезов.

Например, в стволах стрелкового оружия калибра 5,45 - 9 мм может быть 4 или 6 нарезов, в оружии калибра 12,7-14,5 мм - 8 нарезов, в 30-мм и 40-мм противопехотных гранатометах, как правило, - 12 нарезов.

Баллистика

Баллистика - наука о движении снарядов.

Как и всякая другая наука баллистика выросла на основе практической деятельности человека. Был накоплен большой опыт по метанию камней, копьев, дротиков. Основное развитие получила баллистика как наука с появлением огнестрельного оружия, опираясь на достижения других наук - физику, химию, математику, аэродинамику.

Баллистику разделяют на две части - внутреннюю и внешнюю.

Внутренняя баллистика - изучает явления, происходящие в канале ствола оружия во время выстрела, движение снаряда по каналу ствола и характер нарастания скорости снаряда как внутри канала ствола, так и в период последствия газов.

Выстрел и его периоды

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда. Существенной особенностью выстрела является то, что основная работа пороховых газов по выталкиванию снаряда происходит в переменном объеме.

Выстрел происходит в короткий промежуток времени (0,001-0,06 сек).

При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвора, которое называют давлением форсирования (Ро), необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола.

Наибольшей величины давление газов (Рмах) достигает, когда пуля находится в 4-6 см от начала нарезной части ствола. К этому моменту давление пороховых газов достигает 280-290 МПа. Скорость (V ) движения пули вследствие этого возрастает.

Весь комплекс процессов, происходящих при выстреле, внутренняя баллистика разделяет на ряд отдельных вопросов, а само явление выстрела делит на 4 периода:

Предварительный;

Период последствия газов.

Деление явления выстрела на периоды основывается на возможности для каждого отдельного периода производить математические расчеты величин давления газов и скорости снаряда.

Рис. Периоды выстрела.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола.

Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения.

У некоторых видов стрелкового оружия, особенно короткоствольных (например пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Третий период, или период последствия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю.

Раскаленные пороховые газы, истекающие из ствола за снарядом, при встрече с воздухом вызывают ударную волну, которая является источником звука выстрела. Смешивание раскаленных газов (среди которых есть окись углерода и водорода) с кислородом воздуха вызывает вспышку, наблюдаемое как пламя выстрела.

Основная работа пороховых газов затрачивается с одной стороны, на придание снаряду поступательного и вращательного движения, а с другой стороны - на отдачу оружия.

Работа, затрачиваемая на сообщение снаряду поступательного и вращательного движения, составляет примерно 20-35% от полной энергии пороховых газов (эта величина является коэффициентом полезного действия оружия, 10-25% затрачивается на совершение второстепенных работ, а 40-50% энергии выбрасывается и теряется после вылета снаряда из ствола.

Изучение явления выстрела позволяет делать и выводы чисто прикладного характера по обоснованию правил эксплуатации, хранения и осмотра оружия, вывод о прочности и живучести ствола.

Внутренняя баллистика призвана решать задачу - как пуле заданного веса и калибра придать наибольшую скорость, не превышая допустимого давления пороховых газов в канале ствола оружия.

ВЫСТРЕЛ - выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда. В короткоствольном оружии происходит за 0, 0003 - ,0005 секунд.

От удара бойка по капсюлю воспламеняется инициирующий состав, при этом луч пламени через затравочное отверстие в дне гильзы проникает к пороховому заряду, где происходит его зажжение, воспламенение, горение и образование пороховых газов. Под действием давления пороховых газов, снаряд врезается в нарезы ствола и разгоняется по его каналу. Образование пороховых газов должно идти таким образом, чтобы, несмотря на увеличение объема по мере движения пули по стволу, давление поддерживалось по возможности одинаковой величины (прогрессивное горение пороха). Покидая ствол, снаряд некоторое время увеличивает скорость под действием струи пороховых газов, истекающих из ствола, достигая максимальной скорости на некотором удалении от дульного среза.

Начальная скорость снаряда (пули) V 0 - это расчетная скорость поступательного движения снаряда (пули) у дульного среза ствола, которая определяется опытным путем и примерно на 1-2% больше дульной скорости и меньше максимальной.

Кроме основных причин, влияющих на скорость горения пороха (состав пороха, плотность заряжания, температура заряда, влажность) и как следствие на начальную скорость полета пули, скорость горения бездымного пороха и качество выстрела в большой мере зависят от качества срабатывания капсюля. Капсюль должен образовывать факел пламени определенной длины, температуры и продолжительности действия, объединяющихся термином "форс пламени ". Но капсюли, даже очень хорошего качества, могут не дать необходимого форса пламени при плохом ударе бойка. Для полноценной вспышки энергия удара должна быть 0,14 кг м. Но для полноценного воспламенения боевого вещества капсюля имеют значение также форма и величина бойка. При нормальном бойке и сильной боевой пружине вычищенного ударного механизма форс пламени капсюля постоянный и обеспечивает стабильное воспламенение порохового заряда. В иных случаях форс пламени различен (Рис 1), сгорание пороха неоднообразно, давление в стволе от выстрела к выстрелу меняется, и оружие начинает давать заметные "отрывы" вверх-вниз.

Рис 1. Форс пламени одинаковых капсюлей в разных условиях:
А - боек правильной формы и величины при необходимой энергии удара;
Б - очень острый и тонкий боек;
В - боек нормальной формы при малой энергии удара

Задача порохового заряда и ствола – разогнать пулю до необходимой полетной скорости и придать ей боевую энергию. Процесс происходит в несколько периодов (Рис. 2).

1.Пиростатический – от начала горения заряда до начала движения пули.

2.Форсирования – от начала движения пули до полного врезания ведущего пояска пули в нарезы.

В НСД они называются предварительным периодом.

3.Пиродинамический (первый или основной)– от начала движения пули по нарезам до полного сгорания пороха. Развитие: скорость пули минимальна - увеличение давления до максимального - увеличение скорости пули - снижение давления (т.к. увеличение запульного пространства).

4.Термодинамический (второй) – от момента полного сгорания пороха до момента вылета пули из канала ствола (спад давления, увеличение скорости пули). У короткоствольного оружия обычно отсутствует т. к. при малой длине ствола пороховой заряд полностью сгорать не успевает.



5.Последействия газов – от момента вылета пули из канала ствола до момента прекращения действия на нее пороховых газов. В конце периода пуля приобретает максимальную скорость.

Рис. 2. Периоды выстрела.

Следует отметить, что максимальные скорости несколько выше при наличии глушителя благодаря ускорению, придаваемому пуле в момент вылета из ствола и значительно меньшему количеству мелкой пыли и грязного воздуха, через который приходится пролетать пуле. Глушитель способствует значительному снижению количества грязного воздуха. Так называемый «грязный воздух» представляет собой облако турбулентности, создаваемое газами сгорания, сопровождающими пулю в момент вылета из ствола

ОТДАЧА ОРУЖИЯ

ОТДАЧА - движение оружия назад при выстреле.

Одна и та же сила, действуя на тела разной массы (веса), приводит их в движение со скоростью, прямо пропорционально их массе (механика). Если пренебречь реактивным действием пороховых газов на дульный срез, то можно сказать, что скорость отдачи во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия.

Энергия отдачи автоматического оружия, принцип действия которого основан на использовании энергии отдачи меньше, чем у неавтоматического или принцип действия которого основан на использовании энергии пороховых газов, отводимых через газоотводное отверстие.

При стрельбе из пистолета, при охвате рукоятки, средняя часть кисти, воспринимающей отдачу, находится ниже и правее оси канала ствола. Сила отдачи и сила реакции создают пары сил, вращающие оружие в вертикальной и в горизонтальных плоскостях (рис. 3). В результате взаимодействия этих двух пар сил дульная часть пистолета при выстреле отклоняются вверх и влево.

Угол, образованный направлением оси канала ствола до выстрела и в момент вылета пули из канала ствола - УГОЛ ВЫЛЕТА.

При стрельбе из пистолета, запирание канала ствола которого происходит свободным затвором (ПМ), угол вылета незначителен т.к. в момент выстрела отходит назад лишь затвор (порядка 10 мм) при практически неподвижном положении оружия, что доказано расчетами и проведением скоростной фотосъемки на специальном оборудовании (Рис. 4).

Применительно к пистолетам, запирание канала ствола которых происходит свободным затвором, следует рассматривать два периода отдачи.


Рис. 4. Положение пистолета в момент вылета пули.

Рис. 5. Образование угла отдачи.

Периоды отдачи ПМ:

ПЕРВЫЙ ПЕРИОД: - движение затвора назад во время выстрела. (Начинается с момента врезания пули в нарезы канала ствола и заканчивается в момент вылета пули при практически неподвижном пистолете).

ВТОРОЙ ПЕРИОД: - движение оружия назад посла выстрела под действием затвора. (Начинается с момента вылета пули и заканчивается в момент возвращения затвора под действием возвратной пружины в переднее крайнее положение).

Оружие, двигаясь назад во втором периоде отдачи, встречает сопротивление руки и вращается стволом вверх и влево, имея центр вращения, проходящий через рукоятку в районе I фаланги безымянного пальца руки, удерживающей пистолет. Затем мышцы руки возвращают пистолет в исходное положение.

Угол, заключённый между линией, проходящей через ось канала ствола в момент вылета пули (линией бросания) и линией, проходящей через ось канала ствола в конце второго периода отдачи, можно назвать УГЛОМ ОТДАЧИ. (Рис. 5).

УГОЛ ОТДАЧИ величина не постоянная и зависит от хватки пистолета - силы сжатия рукоятки оружия, глубины посадки рукоятки, направления усилия сжатия. Чем плотнее хватка и глубже посадка пистолета в кисти руки, тем меньше угол отдачи и наоборот.

При медленной стрельбе второй период отдачи можно не учитывать, так как оружие смещается лишь после вылета пули и спешить восстанавливать его наводку в цель нет необходимости.

При скоростной стрельбе второй период отдачи необходимо учитывать, так как после выстрела требуется быстрое восстановление наводки оружия в цель. И чем меньше будет смещение оружия после второго периода отдачи, тем быстрее произойдет очередное наведение и прицеливание.

КРАСНОДАРСКИЙ УНИВЕРСИТЕТ

Огневая подготовка

Специальности: 031001.65 Правоохранительная деятельность,

специализация: оперативно - разыскная деятельность

(деятельность оперуполномоченного уголовного розыска)

ЛЕКЦИЯ

Тема № 5: «Основы баллистики»

Время: 2 часа.

Место проведения: тир университета

Методика проведения: рассказ, показ.

Основное содержание темы: Сведения о взрывчатых веществах, их классификация. Сведения о внутренней и внешней баллистике. Факторы, влияющие на кучность и меткость стрельбы. Средняя точка попадания и способы ее определения.

Материальное обеспечение.

1. Стенды, плакаты.

Цель занятия:

1. Ознакомить курсантов с взрывчатыми веществами, применяемые в изготовлении боеприпасов , их классификация.

2. Ознакомить курсантов с основами внутренней и внешней баллистики.

3. Научить курсантов определять среднюю точку попадания и способам ее определения.

4. Вырабатывать у курсантов дисциплинированность и исполнительность.

План практического занятия

Введение – 5 мин.

Проверить наличие курсантов, готовность к занятиям;

Объявить тему, цели, учебные вопросы.

Основная часть – 80 мин.

Заключение – 5 мин.

Подвести краткий итог занятия;

Напомнить тему, цели занятия и как они достигнуты;

Напомнить учебные вопросы;

Ответить на возникшие вопросы;

Дать задание на самостоятельную подготовку.

Основная литература:

1. Наставление по стрелковому делу. – М.: Военное издательство, 1987.

Дополнительная литература:

1. Огневая подготовка: учебник/ под общей редакцией. – 3-е изд., испр. и доп. – Волгоград: ВА МВД России, 2009.

2. , Меньшиков подготовка в органах внутренних дел: Учебное пособие. – СПб, 1998.

Во время проведения занятия учебные вопросы рассматриваются последовательно. Для этого учебная группа располагается в классе огневой подготовки.

Баллистика – наука изучающая полет пули (снаряда, гранаты). В баллистике есть четыре направления исследования:

Внутренняя баллистика, которая изучает процессы происходящие при выстреле внутри канала ствола огнестрельного оружия;

Промежуточная баллистика, которая изучает полет пули на некотором расстоянии от дульного среза ствола, когда пороховые газы еще продолжают свое воздействие на пулю;

Внешняя баллистика, которая изучает процессы происходящие с пулей в воздухе, после прекращения воздействия на нее пороховых газов;

Баллистика цели, которая изучает процессы происходящие с пулей в плотной среде.

Взрывчатые вещества

Взрывчатыми веществами (ВВ) называются такие химические соединения и смеси, которые способны под влиянием внешних воздействий к очень быстрым химическим превращениям, сопровождающимся

выделением тепла и образованием большого количества сильно нагретых газов, способных производить работу метания или разрушения.

Пороховой заряд винтовочного патрона весом 3,25г при выстреле сгорает примерно за 0,0012 сек. При сгорании заряда выделяется около 3 калорий тепла и образуется около 3литров газов, температура которых в момент выстрела достигает до градусов. Газы, будучи сильно нагретыми, оказывают сильное давление (до 2900 кг на кв. см.) и выбрасывают пулю из канала ствола со скоростью свыше 800 м/с.

Взрыв может быть вызван: механическим воздействием-ударом, наколом, трением, тепловым, электрическим воздействием-нагревом, искрой, лучом пламени, Энергией взрыва другого взрывчатого вещества, чувствительного к тепловому или механическому воздействию (взрывом капсюля-детонатора).

Горение - процесс превращения ВВ, протекающий со скоростью нескольких метров в секунду и сопровождающийся быстрым нарастанием давления газов, в результате чего происходит метание или разбрасывание окружающих тел. Примером горения ВВ является горение пороха при выстреле. Скорость горения пороха прямо пропорционально давлению. На открытом воздухе скорость горения бездымного пороха равна около 1мм/с, а в канале ствола при выстреле вследствие повышения давления скорость горения пороха увеличивается и достигает нескольких метров в секунду.

По характеру действия и практическому применению ВВ делятся на инициирующие, дробящие (бризантные), метательные и пиротехнические составы.

Взрыв - это процесс превращения ВВ, протекающий со скоростью в несколько сот (тысяч) метров в секунду и сопровождающийся резким повышением давления газов, которое производит сильное разрушительное действие на вблизи лежащие предметы. Чем больше скорость превращения ВВ, тем больше сила его разрушения. Когда взрыв протекает с максимально возможной в данных условиях скоростью, то такой случай взрыва называется детонацией. Скорость детонации тротилового заряда доходит до 6990 м/с. Передача детонации на расстояние связана с распространением в среде, взрываемый окружающей заряд, резкого повышения давления - ударной волны. Поэтому возбуждение взрыва этим способом почти ничем не отличается от возбуждения взрыва посредством механического удара. В зависимости от химического состава ВВ и условий взрыва, взрывчатые превращения могут происходить в форме горения.

Инициирущими называются такие ВВ, которые обладают высокой чувствительностью, взрываются от незначительного теплового или механического воздействия и своей детонацией вызывают взрыв других взрывчатых веществ. К инициирующим ВВ относятся: гремучая ртуть, азид свинца, стифнат свинца и тетразен. Инициирующие ВВ применяются для снаряжения капсюлей-воспламенителей и капсюлей-детонаторов.

Дробящими (бризантными) называются ВВ, которые взрываются, как правило, под действием детонации инициирующих ВВ и при взрыве происходит дробление окружающих предметов. К дробящим ВВ относятся: тротил, мелинит, тетрил, гексоген, тэн, аммониты и др. Пирокселин и нитроглицерин применяются в качестве исходного материала для изготовления бездымных порохов. Дробящие ВВ применяются в качестве разрывных зарядов мин, гранат, снарядов, а также используются при взрывных работах.

Метательными называются такие ВВ, которые имеют взрывчатое превращение в виде горения при сравнительно медленном нарастании давления, что позволяет использовать их для метания пуль, мин, гранат, снарядов. К метательным ВВ относятся различные виды пороха (дымный и бездымный). Дымный порох представляет собой механическую смесь селитры, серы и древесного угля . Он применяется для снаряжения запалов к ручным гранатам, дистанционных трубок, взрывателей, приготовления огнепроводного шнура и др. Бездымные пороха делятся на пирокселиновый и нитроглицериновый порох. Они применяются в качестве боевых (пороховых) зарядов для огнестрельного оружия; пирокселиновые пороха - для пороховых зарядов патронов стрелкового оружия ; нитроглицериновые, как более мощные, - для боевых зарядов гранат, мин, снарядов.

Пиротехнические составы представляют собой смеси горючих веществ (магния, фосфора, алюминия и др.), окислителей (хлоратов, нитратов и др.) и цементаторов (естественные и искусственные смолы и др.) Кроме того, они содержат примеси специального назначения; вещества, окрашивающие пламя; вещества, уменьшающие чувствительность состава, и др. Преимущественной формой превращения пиротехнических составов в обычных условиях их применения является горение. Сгорая, они дают соответствующий пиротехнический (огневой) эффект (осветительный, зажигательный и т. п)

Пиротехнические составы применяются для снаряжения осветительных, сигнальных патронов, трассирующих и зажигательных составов пуль, гранат, снарядов.

Краткие сведения о внутренней баллистике

Выстрел и его периоды.

Выстрелом называется выбрасывание пули из канала ствола энергией газов, образующихся при сгорании порохового заряда. При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона 2взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании заряда образуется большое количество сильно нагретых пороховых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а та к же на стенки ствола и затвор. В результате давления пороховых газов на дно пули, она сдвигается с места и врезается в нарезы. Продвигаясь по нарезам пуля приобретает вращательное движение и постепенно увеличивая скорость выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия назад – отдачу. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику препятствует прорыву пороховых газов в сторону затвора. При выстреле также происходит колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие вслед за пулей, при встрече с воздухом порождают пламя и ударную волну; последняя является источником звука при выстреле.

Примерно 25-35% энергии пороховых газов затрачивается на сообщение п-25% на выполнение второстепенных работ, около 40% энергии не используется и теряется после вылета пули.

Выстрел происходит в очень короткий промежуток времени 0,001-0,06 секунды.

При выстреле различают четыре последовательных периода:

Предварительный, который длится от момента возгорания пороха до полного врезания пули в нарезы ствола;

Первый или основной, который длится от момента врезания пули в нарезы до момента полного сгорания порохового заряда;

Второй, который длится от момента полного сгорания заряда до момента вылета пули из канала ствола,

Третий или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия на нее давления газов.

У короткоствольного оружия второй период может отсутствовать.

Начальная скорость пули

За начальную скорость принимается условная скорость пули, которая меньше максимальной, но больше дульной. Начальная скорость определяется с помощью расчетов. Начальная скорость является важнейшей характеристикой оружия. Чем выше начальная скорость, тем больше ее кинетическая энергия и следовательно больше дальность полета, дальность прямого выстрела, пробивное действие пули. Влияние внешних условий на полет пули с увеличением скорости сказывается меньше.

Величина начальной скорости зависит от длины ствола, веса пули, веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжания. Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле. При очень глубокой посадке пули увеличивается начальная скорость, но вследствие большого скачка давления при вылете пули газы могут разорвать ствол.

Отдача оружия и угол вылета.

Отдачей называется движение оружия (ствола) назад во время выстрела. Скорость отдачи оружия во столько же раз меньше, во сколько пуля легче оружия. Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, которые отклоняют дульную часть оружия вверх. величина этого отклонения тем больше, чем больше плечо приложения сил. Вибрация ствола также отклоняет дульную часть, причем отклонение может быть направлено в любую сторону. Сочетание отдачи, вибрации и других причин приводят к тому, что в момент выстрела ось канала ствола отклоняется от своего первоначального положения. Величина отклонения оси канала ствола в момент вылета пули от первоначального его положения называется углом вылета. Угол вылета увеличивается при неправильной прикладке, использования упора, загрязнении оружия.

Действие пороховых газов на ствол и меры по его сбережению.

В процессе стрельбы ствол подвергается износу. Причины вызывающие износ ствола можно разделить на три группы: механические; химические; термические.

Причины механического характера – удары и трение пули о нарезы, неправильная чистка ствола без вставленной насадки вызывают механические повреждения поверхности канала ствола.

Причины химического характера вызываются химически агрессивным пороховым нагаром, который остается после стрельбы на стенках канала ствола. Сразу же после стрельбы необходимо тщательно прочистить канал ствола и смазать его тонким слоем ружейной смазки. Если этого не сделать сразу, то нагар проникая в микроскопические трещинки хромированного покрытия вызывает ускоренную коррозию металла. Прочистив ствол и убрав нагар некоторое время спустя, мы не сможем убрать следы коррозии. После очередной стрельбы коррозия проникнет глубже. позже появятся сколы хрома и глубокие раковины. Между стенками канала ствола и стенками пули увеличится зазор в который будут прорываться газы. Пуле будет сообщаться меньшая скорость полета. Разрушение хромированного покрытия стенок ствола имеет необратимый характер.

Причины термического характера вызваны периодическим местным сильным нагревом стенок канала ствола. Вместе с периодическим растяжением они приводят к появлению сетки разгара, оправлению металла в глубине трещин. Это опять приводит к сколу хрома со стенок канала ствола. В среднем при правильном уходе за оружием живучесть хромированного ствола составляет 20-30 тысяч выстрелов.

Краткие сведения о внешней баллистике

Внешней баллистикой называется наука, изучающая движение пули после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя. Сила тяжести заставляет пулю (гранату) постепенно снижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. На преодоление силы сопротивления воздуха затрачивается часть энергии пули.

Траектория и ее элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете. Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).

Сила сопротивления воздуха вызывается тремя основными причинами трением воздуха, образованием завихрений и образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью. За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха - баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления. Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 15° и начальной скорости 800 м/с в безвоздушном пространстве полетела бы на дальность 32620м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха. Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха. При сверхзвуковых скоростях полета пули когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха. Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.

Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение. Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклонится не, вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т. е. вправо. Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха - она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось - конус с вершиной в центре тяжести. Происходит так называемое медленное коническое, или прецессионное, движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории.

Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией.

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.

В таблицах стрельбы деривация дается как поправка направления в тысячных. Однако при стрельбе из стрелкового оружия величина деривации незначительная (например, на дальности 500 м она не превышает 0,1 тысячной) и ее влияние на результаты стрельбы практически не учитывается.

Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты. Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед. Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому кучность стрельбы улучшается.

Для изучения траектории пули (гранаты) приняты следующие определения

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения .

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы .

Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения . Если этот угол отрицательный, то он называется углом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания .

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета .

Точка пересечения траектории с горизонтом оружия называется точкой падения .

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения .

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью .

Скорость пули (гранаты) в точке падения называется окончательной скоростью .

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета .

Наивысшая точка траектории называется вершиной траектории .

Кратчайшее расстояние от вершины траектории до горизонта оружия называется высотой траектории .

Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории .

Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания .

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания .

Угол, заключенный между линией прицеливания и горизонтом оружия, называется углом места цели . Угол места цели считается положительным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью .

Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели . Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи .

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи . За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Траектория пули в воздухе имеет следующие свойства:

Нисходящая ветвь короче и круче восходящей;

Угол падения "больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания- на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания - в точке падения;

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей;

Траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

Траекторию гранаты в воздухе можно разделить на два участка: активный - полет гранаты под действием реактивной силы (от точки вылета до точки, где действие реактивной силы прекращается) и пассивный - полет гранаты по инерции. Форма траектории гранаты примерно такая же, как и у пули.

Явление рассеивания

При стрельбе из одного и того же оружия при самом тщательном соблюдении точности и однообразия производства выстрелов каждая пуля (граната) вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль (гранат). Явление разбрасывания пуль (гранат) при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль (гранат) или рассеиванием траекторий.

Совокупность траекторий пуль (гранат), полученных вследствие их естественного рассеивания, называется снопом траекторий (рис. 1). Траектория, проходящая в середине снопа траекторий, называется средней траекторией. Табличные и расчетные данные относятся к средней траектории,

Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания.

Площадь, на которой располагаются точки встречи (пробоины) пуль (гранат), полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания. Площадь рассеивания обычно имеет форму эллипса. При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга. Взаимно перпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпадала с направлением стрельбы, называются осями рассеивания. Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями.

Причины рассеивания

Причины, вызывающие рассеивание пуль (гранат), могут быть сведены в три группы:

Причины, вызывающие разнообразие начальных скоростей;

Причины, вызывающие разнообразие углов бросания и направления стрельбы;

Причины, вызывающие разнообразие условий полета пули (гранаты).

Причинами, вызывающими разнообразие начальных скоростей, являются:

Разнообразие в весе пороховых зарядов и пуль (гранат), в форме и размерах пуль (гранат) и гильз, в качестве пороха, в плотности заряжания и т. д., как результат неточностей (допусков) при их изготовлении;

Разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона (гранаты) в нагретом при стрельбе стволе;

Разнообразие в степени нагрева и в качественном состоянии ствола.

Эти причины ведут к колебанию в начальных скоростях и, следовательно, в дальностях полета пуль (гранат), т. е. приводят к рассеиванию пуль (гранат) по дальности (высоте) и зависят в основном от боеприпасов и оружия.

Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:

Разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);

Разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;

Угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия. Эти причины приводят к рассеиванию пуль (гранат) по боковому направлению и дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и в основном зависят от выучки стреляющего.

Причинами, вызывающими разнообразие условий полета пули (гранаты), являются:

Разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);

Разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины силы сопротивления воздуха. Эти причины приводят к увеличению рассеивания по боковому направлению и по дальности (высоте) и в основном зависят от внешних условий стрельбы и от боеприпасов.

При каждом выстреле в разном сочетании действуют все три группы причин. Это приводит к тому, что полет каждой пули (гранаты) происходит по траектории, отличной от траекторий других пуль (гранат).

Устранить полностью причины, вызывающие рассеивание, а, следовательно, устранить и само рассеивание невозможно. Однако, зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание, или, как принято говорить, повысить кучность стрельбы.

Уменьшение рассеивания пуль (гранат) достигается отличной выучкой стреляющего, тщательной подготовкой оружия и боеприпасов к стрельбе, умелым применением правил стрельбы, правильной изготовкой к стрельбе, однообразной прикладкой, точной наводкой (прицеливанием), плавным спуском курка, устойчивым и однообразным удержанием оружия при" стрельбе, а также надлежащим уходом за оружием и боеприпасами.

Закон рассеивания

При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономерность. Рассеивание пуль (гранат) подчиняется нормальному закону случайных ошибок, который в отношении к рассеиванию пуль (гранат) называется законом рассеивания. Этот закон характеризуется следующими тремя положениями):

1. Точки встречи (пробоины) на площади рассеивания располагаются неравномерно - гуще к центру рассеивания и реже к краям площади рассеивания.

2. На площади рассеивания можно определить точку, являющуюся центром рассеивания (средней точкой попадания), относительно которой распределение точек встречи (пробоин) симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.

3. Точки встречи (пробоины) в каждом частном случае занимают не беспредельную, а ограниченную площадь. Таким образом, закон рассеивания в общем виде можно сформулировать так: при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль (гранат) неравномерно, симметрично и не беспредельно.

Определение средней точки попадания (СТП)

При определении СТП нужно определить явно оторвавшиеся пробоины.

Пробоина считается явно оторвавшейся если она удалена от предполагаемой СТП более чем на три диаметра габарита кучности стрельбы.

При малом числе пробоин (до 5) положение СТП определяется способом последовательного или пропорционального деления отрезков.

Способ последовательного деления отрезков заключается в следующем:

соединить прямой две пробоины (точки встречи) и расстояние между ними разделить пополам, полученную точку соединить с третьей пробоиной (точкой встречи) и расстояние между ними разделить на три равные части; так как к центру рассеивания пробоины (точки встречи) располагаются гуще, то за среднюю точку попадания трех пробоин (точек встречи) принимается деление, ближайшее к двум первым пробоинам (точкам встречи), найденную среднюю точку попадания для трех пробоин (точек встречи) соединить с четвертой пробоиной (точкой встречи) и расстояние между ними разделить на четыре равные части; деление ближайшее к первым трем пробоинам, принимается за среднюю точку попадания четырех пробоин.

Метод пропорционального деления заключается в следующем:

Четыре рядом лежащие пробоины (точки встречи) соединить попарно, середины обеих прямых снова соединить и полученную линию разделить пополам; точка деления и будет средней точкой попадания.

Прицеливание (наводка)

Для того чтобы пуля (граната) долетела до цели и попала в нее или желаемую точку на ней, необходимо до выстрела придать оси канала ствола определенное положение в пространстве (в горизонтальной и вертикальной плоскостях).

Придание оси канала ствола оружия необходимого для стрельбы положения в пространстве называется прицеливанием или наводкой .

Придание оси канала ствола требуемого положения в горизонтальной плоскости называется горизонтальной наводкой. Придание оси канала ствола требуемого положения в вертикальной плоскости называется вертикальной наводкой .

Наводка осуществляется с помощью прицельных приспособлений и механизмов наводки и выполняется в два этапа.

Вначале на оружии с помощью прицельных приспособлений строится схема углов, соответствующая расстоянию до цели и поправкам на различные условия стрельбы (первый этап наводки). Затем с помощью механизмов наведения совмещается построенная на оружии схема углов со схемой, определенной на местности (второй этап наводки).

Если горизонтальная и вертикальная наводка производится непосредственно по цели или по вспомогательной точке вблизи от цели, то такая наводка называется прямой.

При стрельбе из стрелкового оружия и гранатометов применяется прямая наводка, выполняемая с помощью одной прицельной линяй.

Прямая линия, соединяющая середину прорези прицела с вершиной мушки, называется прицельной линией.

Для осуществления наводки с помощью открытого прицела необходимо предварительно путем перемещения целика (прорези прицела) придать прицельной линии такое положение, при котором между этой линией и осью канала ствола образуется в вертикальной плоскости угол прицеливания, соответствующий расстоянию до цели, а в горизонтальной плоскости - угол, равный боковой поправке, зависящей от скорости бокового ветра, деривации или скорости бокового движения цели. Затем путем направления прицельной линии в цель (изменения положения ствола с помощью механизмов наводки или перемещением самого оружия, если механизмы наводки отсутствуют) придать оси канала ствола необходимое положение в пространстве.

В оружии, имеющем постоянную установку целика (например, у пистолета Макарова), требуемое положение оси канала ствола в вертикальной плоскости придается путем выбора точки прицеливания, соответствующей расстоянию до цели, и направления прицельной линии в эту точку. В. оружии, имеющем неподвижную в боковом направлении прорезь прицела (например, у автомата Калашникова), требуемое положение оси канала ствола в горизонтальной плоскости придается путем выбора точки прицеливания, соответствующей боковой поправке, и направления в нее прицельной линии.

Прицельной линией в оптическом прицеле является прямая, проходящая через вершину прицельного пенька и центр объектива.

Для осуществления наводки с помощью оптического прицела необходимо предварительно с помощью механизмов прицела придать прицельной линии (каретке с сеткой прицела) такое положение, при котором между этой линией и осью канала ствола образуется в вертикальной плоскости угол, равный углу прицеливания, а в горизонтальной плоскости-угол, равный боковой поправке. Затем путем изменения положения оружия нужно совместить прицельную линию с целью,. при этом оси канала ствола придается требуемое положение в пространстве.

Прямой выстрел

Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении, называется

прямым выстрелом .

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела. Каждый стрелок должен знать величину дальности прямого выстрела по различным целям из своего оружия и умело определять дальность прямого выстрела при стрельбе. Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения над линией прицеливания или высотой траектории. На полет пули в воздухе оказывают влияние метеорологические, баллистические и топографические условия. При пользовании таблиц необходимо помнить, что данные траектории в них соответствуют нормальным условиям стрельбы.

Барометр" href="/text/category/barometr/" rel="bookmark">барометрическое) давление на горизонте оружия 750 мм рт. ст.;

Температура воздуха на горизонте оружия +15С;

Относительная влажность воздуха 50% (относительной влажностью называется отношение количества водяных паров, содержащихся в воздухе, к наибольшему количеству водяных паров, которое может содержаться в воздухе при данной температуре);

Ветер отсутствует (атмосфера неподвижна) .

б) Баллистические условия:

Вес пули (гранаты), начальная скорость и угол вылета равны значениям, указанным в таблицах стрельбы;

Температура заряда +15°С;

Форма пули (гранаты) соответствует установленному чертежу;

Высота мушки установлена по данным приведения оружия к нормальному бою; высоты (деления) прицела соответствуют табличным углам прицеливания.

в) Топографические условия:

Цель находится на горизонте оружия;

Боковой наклон оружия отсутствует.

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.

С увеличением атмосферного давления плотность воздуха увеличивается, а вследствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули (гранаты). Наоборот, с уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается.

При повышении местности на каждые 100 м атмосферное давление понижается в среднем на 9 мм.

При стрельбе из стрелкового оружия на равнинной местности поправки дальности на изменение атмосферного давления незначительные и не учитываются. В горных условиях при высоте местности над уровнем моря 2000 м и более эти поправки необходимо учитывать при стрельбе, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

При повышении температуры плотность воздуха уменьшается, а вследствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули (гранаты). Наоборот, с понижением температуры плотность и сила сопротивления воздуха увеличиваются и дальность полета пули (грана ты) уменьшается.

При повышении температуры порохового заряда увеличиваются скорость горения пороха, начальная скорость и дальность полета пули (гранаты).

При стрельбе в летних условиях поправки на изменение температуры воздуха и порохового заряда незначительные и практически не учитываются; при стрельбе зимой (в условиях низких температур) эти поправки необходимо учитывать, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

При попутном ветре уменьшается скорость полета пули (гранаты) относительно воздуха. Например, если скорость пули относительно земли равна 800 м/с, а скорость попутного ветра 10 м/с, то скорость пули относительно воздуха будет равна 790 м/с (800-10).

С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается. Поэтом при попутном ветре пуля полетит дальше, чем при безветрии.

При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увеличится и дальность полета пули уменьшится.

Продольный (попутный, встречный) ветер на полет пули оказывает незначительное влияние, и в практике стрельбы из стрелкового оружия поправки на такой ветер не вводятся. При стрельбе из гранатометов поправки на сильный продольный ветер следует учитывать.

Боковой ветер оказывает давление на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направления: ветер справа отклоняет пулю в левую сторону, ветер слева - в правую сторону.

Граната на активном участке полета (при работе реактивного двигателя) отклоняется в сторону, откуда дует ветер: при ветре справа - вправо, при ветре слева - влево. Такое явление объясняется тем, что боковой ветер поворачивает хвостовую часть гранаты в направлении ветра, а головную часть против ветра и под действием реактивной силы, направленной вдоль оси, граната отклоняется от плоскости стрельбы в ту сторону, откуда дует ветер. На пассивном участке траектории граната отклоняется в сторону, куда дует ветер.

Боковой ветер оказывает значительное влияние, особенно на полет гранаты, и его необходимо учитывать при стрельбе из гранатометов и стрелкового оружия.

Ветер, дующий под острым углом к плоскости стрельбы, оказывает одновременно влияние и на изменение дальности полета пули и на боковое ее отклонение.

Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули (гранаты), поэтому оно не учитывается при стрельбе.

При стрельбе с одной установкой прицела (с одним углом прицеливания), но под различными углами места цели в результате ряда причин, в том числе изменения плотности воздуха на разных высотах, а следовательно, и силы сопротивления воздуха, изменяется величина наклонной (прицельной) дальности полета пули (гранаты). При стрельбе под небольшими углами места цели (до ±15°) эта дальность полета пули (гранаты) изменяется весьма незначительно, поэтому допускается равенство наклонной и полной горизонтальной дальностей полета пули, т. е. неизменность формы (жесткость) траектории.

При стрельбе под большими углами места цели наклонная дальность полета пули изменяется значительно (увеличивается), поэтому при стрельбе в горах и по воздушным целям необходимо учитывать поправку на угол места цели, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

Заключение

Сегодня мы познакомились с факторами, влияющими на полет пули (гранаты) в воздухе и законом рассеивания. Все правила стрельбы для различных типов оружия рассчитаны на срединную траекторию полета пули. При наведении оружия в цель, при выборе исходных данных для стрельбы необходимо учитывать баллистические условия.